Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Ramshaw J.D. — Elementary Derivation of Nonlinear Transport Equations from Statistical Mechanics
Ramshaw J.D. — Elementary Derivation of Nonlinear Transport Equations from Statistical Mechanics

Читать книгу

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Elementary Derivation of Nonlinear Transport Equations from Statistical Mechanics

Автор: Ramshaw J.D.


Journal of Statistical Physics, Vol. 45, Nos. 5/6, 1986. p. 983-999.
Exact closed nonlinear transport equations for a set of macroscopic variables a are derived from classical statistical mechanics. The derivation involves only simple manipulations of the Liouville equation, and makes no use of projection operators or graphical expansions. It is based on the Chapman Enskog idea of separating the distribution function into a constrained equilibrium part, obtained from information theory, and a small remainder. The resulting exact transport equations involve time convolutions over the past history of both a(t) and a'(t). However, if the variables a provide a complete macroscopic description, the equations may be simplified. This is accomplished by a systematic expansion procedure of Chapman Enskog type, in which the small parameter is the natural parameter of slowness relevant to the problem. When carried out to second order, this expansion leads to approximate nonlinear transport equations that are local in time. These equations are valid far from equilibrium. They contain nonlinear (i.e., state-dependent) transport coefficients given by integrals of time correlation functions in the constrained equilibrium ensemble. Earlier results are recovered when the equations are linearized about equilibrium. As an illustrative application of the formalism, an expression is derived for the nonlinear (i.e., velocity-dependent) friction coefficient for a heavy particle in a bath of light particles.

Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 17

Добавлена в каталог: 10.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте