Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kuznetsov S.P., Kuznetsov A.P., Sataev I.R. — Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps
Kuznetsov S.P., Kuznetsov A.P., Sataev I.R. — Multiparameter Critical Situations, Universality and  Scaling in Two-Dimensional Period-Doubling Maps



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps

Авторы: Kuznetsov S.P., Kuznetsov A.P., Sataev I.R.

Аннотация:

We review critical situations, linked with period-doubling transition to chaos, which require using at least two-dimensional maps as models representing the universality classes. Each of them corresponds to a saddle solution of the twodimensional generalization of Feigenbaum-Cvitanovi´c equation and is characterized by a set of distinct universal constants analogous to Feigenbaum’s α and δ. One type of criticality designated H was discovered by several authors in 80-th in the context of period doubling in conservative dynamics, but occurs as well in dissipative dynamics, as a phenomenon of codimension 2. Second is bicritical behavior, which takes place in systems allowing decomposition onto two dissipative period-doubling subsystems, each of which is brought by parameter tuning onto a threshold of chaos. Types of criticality designated as FQ and C occur in non-invertible two-dimensional maps. We present and discuss a number of realistic systems manifesting those types of critical behavior and point out some relevant conditions of their potential observation in physical systems. In particular, we indicate a possibility for realization of the H type criticality without vanishing dissipation, but with its compensation in a self-oscillatory system. Next, we present a number of examples (coupled H´enon-like maps, coupled driven oscillators, coupled chaotic self-oscillators), which manifest bicritical behavior. For FQ-type we indicate possibility to arrange it in non-symmetric systems of coupled period-doubling subsystems, e.g. in H´enon-like maps and in Chua’s circuits. For C-type we present examples of its appearance in a driven R¨ ossler oscillator at the period-doubling accumulation on the edge of syncronization tongue and in a model map with the Neimark–Sacker bifurcation.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2005

Количество страниц: 52

Добавлена в каталог: 27.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте