Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Buot F.A. — Exact Integral Operator Form of the Wigner Distribution-Function Equation in Many-Body Quantum Transport Theory
Buot F.A. — Exact Integral Operator Form of the Wigner Distribution-Function Equation in Many-Body Quantum Transport Theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Exact Integral Operator Form of the Wigner Distribution-Function Equation in Many-Body Quantum Transport Theory

Автор: Buot F.A.

Аннотация:

Journal of Statistical Physics, Vol. 61, Nos. 5/6, 1990. p. 1223-1256.
A formal derivation of a generalized equation of a Wigner distribution function including all many-body effects and all scattering mechanisms is given. The result is given in integral operator form suitable for application to the numerical modeling of quantum tunneling and quantum interference solid state devices. In the absence of scattering and many-body effects, the result reduces to the "noninteracting-particle" Wigner distribution function equation, often used to simulate resonant tunneling devices. The derivation uses a Weyl transform technique which can easily incorporate Bloch electrons. Weyl transforms of selfenergies are derived. Various simplifications of a general quantum transport equation for semiconductor device analysis and self-consistent numerical simulation of a quantum distribution function in the phase-space/frequency-time domain are discussed. Recent attempts to include collisions in the Wigner distribution-function approach to the numerical simulation of tunneling devices are clearly shown to be non-self-consistent and inaccurate; more accurate numerical simulation is needed for a deeper understanding of the effects of collision and scattering.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 34

Добавлена в каталог: 27.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте