Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Laplace Operator and Random Walk on One-Dimensional Nonhomogeneous Lattice
Авторы: Anshelevieh V.V., Vologodskii A.V.
Аннотация:
A classical result of probability theory states that under suitable space and time renormalization, a random walk converges to Brownian motion. We prove an analogous result in the case of nonhomogeneous random walk on onedimensional lattice. Under suitable conditions on the nonhomogeneous medium, we prove convergence to Brownian motion and explicitly compute the diffusion coefficient. The proofs are based on the study of the spectrum of random matrices of increasing dimension.