Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Anshelevieh V.V., Vologodskii A.V. — Laplace Operator and Random Walk on One-Dimensional Nonhomogeneous Lattice
Anshelevieh V.V., Vologodskii A.V. — Laplace Operator and Random Walk on  One-Dimensional Nonhomogeneous Lattice



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Laplace Operator and Random Walk on One-Dimensional Nonhomogeneous Lattice

Авторы: Anshelevieh V.V., Vologodskii A.V.

Аннотация:

A classical result of probability theory states that under suitable space and time renormalization, a random walk converges to Brownian motion. We prove an analogous result in the case of nonhomogeneous random walk on onedimensional lattice. Under suitable conditions on the nonhomogeneous medium, we prove convergence to Brownian motion and explicitly compute the diffusion coefficient. The proofs are based on the study of the spectrum of random matrices of increasing dimension.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1981

Количество страниц: 12

Добавлена в каталог: 22.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте