Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Gibbsian Dynamics and Invariant Measures for Stochastic Dissipative PDEs
Авторы: E W., Liu D.
Аннотация:
We present a general strategy for proving ergodicity for stochastically forced nonlinear dissipative PDEs. It consists of two main steps. The first step is the reduction to a finite dimensional Gibbsian dynamics of the low modes. The second step is to prove the equivalence between measures induced by different past histories using Girsanov theorem. As applications, we prove ergodicity for Ginzburg–Landau, Kuramoto–Sivashinsky and Cahn–Hilliard equations with stochastic forcing.