Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
van Kampen N.G. — Brownian Motion on a Manifold
van Kampen N.G. — Brownian Motion on a Manifold



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Brownian Motion on a Manifold

Автор: van Kampen N.G.

Аннотация:

The question of the existence and correct form of equations describing Brow-nian motion on a manifold cannot be answered by mathematics alone, but requires a study of the underlying physics. As in classical mechanics, manifolds enter through the transformation of variables needed to account for the presence of constraints. The constraints are either due to a physical agency that forces the motion to remain on a manifold, or they represent conserved quantities of the equation of motion themselves. Also the Brownian motion is described either by a Smoluchowski diffusion equation or by a Kramers equation. The four cases lead to the following conclusions. (i) Smoluchowski diffusion with a conserved quantity reduces to a diffusion equation on the manifold; (ii) The same is true for diffusion with a physical constraint in three dimensions, but in more dimensions it may happen that no autonomous equation on the manifold results; (iii) A Kramers equation with a conserved quantity reduces to an equation on the manifold, but in general not of the form of a Kramers equation; (iv) The Kramers equation with a physical constraint reduces to an autonomous Kramers equation on the manifold only for a special shape of that constraint. Throughout, only a certain type of physical constraints has been envisaged, and global questions are ignored. Finally, the customary heuristic construction of a Fokker-Planck equation for a mechanical system on a manifold is demonstrated for the case of Brownian rotation of a rigid body, and its shortcomings are emphasized.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 24

Добавлена в каталог: 21.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте