Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Adler J., Meir Y., Aharony A. — Low-Concentration Series in General Dimension
Adler J., Meir Y., Aharony A. — Low-Concentration Series in General Dimension



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Low-Concentration Series in General Dimension

Авторы: Adler J., Meir Y., Aharony A.

Аннотация:

Journal of Statistical Physics, Vol. 58, Nos. 3/4, 1990. p. 511-538.
We discuss recent work on the development and analysis of low-concentration series. For many models, the recent breakthrough in the extremely efficient no-free-end method of series generation facilitates the derivation of 15th-order series for multiple moments in general dimension. The 15th-order series have been obtained for lattice animals, percolation, and the Edwards Anderson Ising spin glass. In the latter cases multiple moments have been found. From complete graph tables through to 13th order, general dimension 13th-order series have been derived for the resistive susceptibility, the moments of the logarithms of the distribution of currents in resistor networks, and the average transmission coefficient in the quantum percolation problem, l lth-order series have been found for several other systems, including the crossover from animals to percolation, the full resistance distribution, nonlinear resistive susceptibility and current distribution in dilute resistor networks, diffusion on percolation clusters, the dilute Ising model, dilute antiferromagnet in a field, and random field Ising model and self-avoiding walks on percolation clusters. Series for the dilute spin-l/2 quantum Heisenberg ferromagnet are in the process of development. Analysis of these series gives estimates for critical thresholds, amplitude ratios, and critical exponents for all dimensions. Where comparisons are possible, our series results are in good agreement with both z-expansion results near the upper critical dimension and with exact results (when available) in low dimensions, and are competitive with other numerical approaches in intermediate realistic dimensions.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 28

Добавлена в каталог: 20.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте