Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Reduction Formula for Fermion Loops and Density Correlations of the 1D Fermi Gas
Авторы: Neumayr A., Metzner W.
Аннотация:
Journal of Statistical Physics, Vol. 96, Nos. 34, 1999, p. 613-626.
Fermion N-loops with an arbitrary number of density vertices N>d+1 in d spatial dimensions can be expressed as a linear combination of (d+1)-loops with coefficients that are rational functions of external momentum and energy variables. A theorem on symmetrized products then implies that divergences of single loops for low energy and small momenta cancel each other when loops with permuted external variables are summed. We apply these results to the one-dimensional Fermi gas, where an explicit formula for arbitrary N-loops can be derived. The symmetrized N-loop, which describes the dynamical N-point density correlations of the 1D Fermi gas, does not diverge for low energies and small momenta. We derive the precise scaling behavior of the symmetrized N-loop in various important infrared limits.