Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Chvosta P., Pottier N. — One-Dimensional Diffusion in a Semiinfinite Poisson Random Force
Chvosta P., Pottier N. — One-Dimensional Diffusion in a Semiinfinite Poisson Random Force



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: One-Dimensional Diffusion in a Semiinfinite Poisson Random Force

Авторы: Chvosta P., Pottier N.

Аннотация:

Journal of Statistical Physics, Vol. 97, Nos. 12, 1999. p. 323-349.
We consider the one-dimensional diffusion of a particle on a semiinfinite line and in a piecewise linear random potential. We first present a new formalism which yields an analytical expression for the Green function of the Fokker-Planck equation, valid for any deterministic construction of the potential profile. The force is then taken to be an asymmetric dichotomic process. Solving the corresponding energy-dependent stochastic Riccati equation in the space-asymptotic regime, we give an exact probabilistic description of returns to the origin. This method allows for a time-asymptotic characterization of the underlying dynamical phases. When the two values taken by the dichotomic force are of different signs, there occur trapping potential wells with a broad distribution of trapping times, and dynamical phases may appear, depending on the man force. If both values are negative, the time-asymptotic mean value of the probability density at the origin is proportional to the absolute value of the mean force. If they are both positive, traps no longer exist and the dynamics is always normal. Problems with a shot-noise force and with a Gaussian white-noise force are solved as appropriate limiting cases.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 27

Добавлена в каталог: 06.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте