Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Luck J.M. — Critical Behavior of the Aperiodic Quantum Ising Chain in a Transverse Magnetic Field
Luck J.M. — Critical Behavior of the Aperiodic Quantum Ising Chain in a Transverse Magnetic Field



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Critical Behavior of the Aperiodic Quantum Ising Chain in a Transverse Magnetic Field

Автор: Luck J.M.

Аннотация:

Journal of Statistical Physics, Vol. 72, Nos. 3/4, 1993, p. 417-458.
We consider the quantum spin-l/2 Ising chain in a uniform transverse magnetic field, with an aperiodic sequence of ferromagnetic exchange couplings. This system is a limiting anisotropic case of the classical two-dimensional Ising model with an arbitrary layered modalation. Its formal solution via a Jordan-Wigner transformation enables us to obtain a detailed description of the influence of the aperiodic modulation on the singularity of the ground-state energy at the critical point. The key concept is that of the fluctuation of the sums of any number of consecutive couplings at the critical point. When the fluctuation is bounded, the model belongs to the "Onsager universality class" of the uniform chain. The amplitude of the logarithmic divergence in the specific heat is proportional to the velocity of the fermionic excitations, for which we give explicit expressions in most cases of interest, including the periodic and quasiperiodic cases, the Thue-Morse chain, and the random dimer model. When the couplings exhibit an unbounded fluctuation, the critical singularity is shown to be generically similar to that of the disordered chain: the ground-state energy has finite derivatives of all orders at the critical point, and an exponentially small singular part, for which we give a quantitative estimate. In the marginal case of a logarithmically divergent fluctuation, e.g., for the period-doubling sequence or the circle sequence, there is a negative specific heat exponent e, which varies continuously with the strength of the aperiodic modulation.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1993

Количество страниц: 42

Добавлена в каталог: 06.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте