Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Crawford J.D. — Amplitude Expansions for Instabilities in Populations of Globally-Coupled Oscillators
Crawford J.D. — Amplitude Expansions for Instabilities in Populations of Globally-Coupled Oscillators



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Amplitude Expansions for Instabilities in Populations of Globally-Coupled Oscillators

Автор: Crawford J.D.

Аннотация:

Journal of Statistical Physics Vol. 74, Nos. 5/6, 1994. p. 1047-1084.
We analyze the nonlinear dynamics near the incoherent state in a mean-field model of coupled oscillators. The population is described by a Fokker-Planck equation for the distribution of phases, and we apply center-manifold reduction to obtain the amplitude equations for steady-state and Hopf bifurcation from the equilibrium state with a uniform phase distribution. When the population is described by a native frequency distribution that is reflection-symmetric about zero, the problem has circular symmetry. In the limit of zero extrinsic noise, although the critical eigenvalues are embedded in the continuous spectrum, the nonlinear coefficients in the amplitude equation remain finite, in contrast to the singular behavior found in similar instabilities described by the Vlasov-Poisson equation. For a bimodal reflection-symmetric distribution, both types of bifurcation are possible and they coincide at a codimension-two Takens-Bogdanov point. The steady-state bifurcation may be supercritical or subcritical and produces a time-independent synchronized state. The Hopf bifurcation produces
both supercritical stable standing waves and supercritical unstable traveling waves. Previous work on the Hopf hifui-cation in a bimodal population by Bonilla, Neu, and Spigler and by Okuda and Kuramoto predicted stable
traveling waves and stable standing waves, respectively. A comparison to these previous calculations shows that the prediction of stable traveling waves results from a failure to include all unstable modes.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1994

Количество страниц: 38

Добавлена в каталог: 05.10.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2021
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте