Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Yong Z., Benson D.A., Meerschaert M.M. — On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations
Yong Z., Benson D.A., Meerschaert M.M. — On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations

Авторы: Yong Z., Benson D.A., Meerschaert M.M.

Аннотация:

Journal of Statistical Physics, Vol. 123, No. 1, April 2006, p. 89-110
The solution of space-fractional advection-dispersion equations (fADE) by random walks depends on the analogy between the fADE and the forward equation for the associated Markov process. The forward equation, which provides a Lagrangian description of particles moving under specific Markov processes, is derived here by the adjoint method. The fADE, however, provides an Eulerian description of solute fluxes. There are two forms of the fADE, based on fractional-flux (FF-ADE) and fractional divergence (FD-ADE). The FF-ADE is derived by taking the integer-order mass conservation of non-local diffusive flux, while the FD-ADE is derived by taking the fractional-order mass conservation of local diffusive flux. The analogy between the fADE and the forward equation depends on which form of the fADE is used and on the spatial variability of the dispersion coefficient D in the fADE. If D does not vary in space, then the fADEs can be solved by tracking particles following a Markov process with a simple drift and an a-stable Levy noise with index a that corresponds to the fractional order of the fADE. If D varies smoothly in space and the solute concentration at the upstream boundary remains zero, the FD-ADE can be solved by simulating a Markov process with a simple drift, an a-stable Levy noise and an additional term with the dispersion gradient and an additional Levy noise of order a — 1. However, a non-Markov process might be needed to solve the FF-ADE with a space-dependent D, except for specific D such as a linear function of space.


Язык: en

Рубрика: Физика/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 22

Добавлена в каталог: 19.09.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте