Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Yiu K.K., Mak M.W., Li C.K. — Gaussian Mixture Models and Probabilistic Decision-Based Neural Networks for Pattern Classification: A Comparative Study
Yiu K.K., Mak M.W., Li C.K. — Gaussian Mixture Models and Probabilistic Decision-Based Neural Networks for Pattern Classification: A Comparative Study



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Gaussian Mixture Models and Probabilistic Decision-Based Neural Networks for Pattern Classification: A Comparative Study

Авторы: Yiu K.K., Mak M.W., Li C.K.

Аннотация:

Probabilistic Decision-Based Neural Networks (PDBNNs) can be considered as a special form of Gaussian Mixture Models (GMMs) with trainable decision thresholds. This paper provides detailed illustrations to compare the recognition accuracy and decision boundaries of PDBNNs with that of GMMs through two pattern recognition tasks, namely the noisy XOR problem and the classification of two-dimensional томе! data. The paper highlights the strengths of PDBNNs by demonstrating that their thresholding mechanism is very effective in detecting data not belonging to any known classes. The original PDBNNs use elliptical basis functions with diagonal covariance matrices, which may be inappropriate for modelling feature vectors with correlated components. This paper overcomes this limitation by using full covariance matrices, and showing that the matrices are effective in characterising non-spherical clusters.


Язык: en

Рубрика: Наука/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 11

Добавлена в каталог: 30.06.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте