| 
    
	    
	    | 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Schmittmann B., Zia R.K.P. — Phase Transitions and Critical Phenomena (vol. 17) |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | 'Electric' field      11 Absorbing edge [of interface]      86
 Anisotropic growth      77—80
 Anisotropic rates      see "Extreme anisotropic rates"
 Anisotropic structure factors      42 43
 Anisotropy      see also "Strong..." "Weak
 Anisotropy exponent      42 44 51 52 54—59 65 67 100—103 146
 Annealed random drive, effects      94 149
 Anomalous diffusion      34 146
 Antiferromagnetic order      139 142
 Ashkin — Teller model      8 127
 Asymmetric simple exclusion process (ASEP)      154
 Asymmetric simple exclusion process (ASEP) with open boundary conditions      159—161
 Asymmetric simple exclusion process (ASEP) with periodic boundary conditions      155
 Asymmetric simple exclusion process (ASEP), blockage introduced      163—164
 Backgammon-pattern configurations      113 114
 Bak — Sneppen model      186
 Barber-pole configurations      130 131
 Bistability, in two-temperature model      174
 Blocking transitions      see "Two-species models"
 Blume — Emery — Griffiths model      8 127
 Boundary conditions for standard model      12 see "Shifted
 Boundary-induced phase transitions      159—160
 Brazil nut problem      183
 Bulk properties, effect of interface orientation      83—87 92
 Bulk properties, phase transitions in critical region      99—103
 Burgers equation and driven-interface models      177
 Burgers equation and microscopic nature of shocks      162 167
 Burgers equation, one-dimensional      154
 Cahn — Allen equation      80 176
 Cahn — Hilliard equation      76
 Capillary waves      81 105
 Catalytic process      172
 Chemical potential gradients (CPGs) in combination with electric fields      112—118
 Chemical potential gradients (CPGs), effects      108—112
 Chemical potential gradients (CPGs), transverse CPG, interface stability affected      119—121
 Chemical processes, modelling of      172
 Cluster variational method      16
 Cluster variational method, dynamic version      16—17
 Co-existence curves      18 74—76
 Co-existence curves for standard model      76
 Co-existence curves, fast rate limit      152 153
 Competing [conservation/non-conservation] dynamics      171—173
 Competing [repulsion/attraction] interactions      195—196
 Configurations during phase separation      77
 Configurations for polarized lattice gas      136—137
 Configurations with shifted periodic boundary conditions      85 87
 Configurations, backgammon-board pattern      113 114
 Configurations, barber-pole pattern      130 131
 Correlations, long-range      25—40 93 see
 Critical dimension, upper      61—63 94 100
 Critical exponents, randomly driven and multi-temperature models      101 103
 Critical exponents, standard model from simulations      44—46 50
 Critical exponents, standard model from theory      65—66 67—71
 Critical exponents, standard model, relations      54—59
 Critical phenomena      6—7 40—73
 Critical phenomena, simulation studies      40—52
 Critical phenomena, theoretical investigations      52—73
 Critical temperature, Onsager value      10 40
 Critical temperature, randomly driven and multi-temperature models      103
 Critical temperature, standard model      15 18 44
 Critical temperature, system with repulsive interactions      141
 Dangerously irrelevant operators      36 37 63 70 100
 Dipolar systems, critical properties      102
 Directed percolation      172
 Domain splitting and merging      87—90
 Domain splitting and merging, critical angle      89
 Driven-interface models      175—179
 Dynamic functional      6 35 60
 Dynamic functional, randomly driven and multi-temperature models      103
 Dynamic functional, standard model      35 61 62
 Dynamic mean-field theory      5 16—19 141
 Dynamic scaling      78
 Earthquake models      186
 Entropy, maximum-entropy principle      18
 Epidemics      172
 Escher, M.C.      12
 Evaporating edge [of interface]      86
 Excess energy      84—85
 Excess energy as function of shift angle      88
 Exponential decays in two-point correlation functions      32—33
 Extreme anisotropic rates      148—154
 Fast rate limit [for standard model]      8 149—154
 FDT      see "Fluctuation-dissipation theorem"
 Finger formation      88 112—118
 Finger formation, factors affecting      91 92 117
 Finite-size scaling in mean-field approaches      16
 Finite-size scaling, anisotropic      44 51—52 103 147
 Finite-size scaling, isotropic      7 44 51 52 140 143
 Fixed-line, Gaussian      33—37
 fixed-point      see also "Standard model" "Wilson
 Fixed-point, Hamiltonians      101—102 173
 Fixed-point, randomly driven and multi-temperature models      101
 Fluctuation-dissipation theorem (FDT)      21 101
 Fluctuation-dissipation theorem (FDT), violation of      23 25 35 192—193
 Fluctuation-dissipation theorem (FDT), violation of, effects      24 38—39 104
 Fluids, non-equilibrium steady states      187—191
 Flux creep      196
 Fokker — Planck equation      25
 Forest fire models      186
 Galilean transformation      63 145
 Gaussian dynamic models      33—37
 Gel electrophoresis      9 127 179 182—183
 Generic scale invariance      26—37 183—186
 Generic scale invariance, compared with self-organized criticality      185
 Gibbs — Thomson relation      90 119
 Glauber spin-flip dynamics      17 171
 Glauber spin-flip dynamics, compared with Kawasaki dynamics      171—172
 Glauber spin-flip dynamics, multi-temperature models with      173—175
 Goldstone modes      104 133
 Green's functions, connected      60 64
 Ground states [for half-filled lattices]      13
 Harris criterion      144
 Hydrodynamic approach      109
 Hydrodynamics, linearized equations      187—189
 Intercalation      112
 Interface orientation, bulk properties affected by      83—87 92
 Interface orientation, finger formation in combined drive systems affected by      117
 Interface stability, effect of transverse chemical potential gradient      119
 Interfacial energy      83
 Interfacial fluctuations, anomalous correlations      103—105
 Interfacial properties, randomly driven and two-temperature models      103—105
 Interfacial properties, standard model      80—93
 Interfacial roughness, suppression of      7 81—83
 Internal energy      47 58
 Internal energy, fluctuations in      49—50
 Interparticle interactions, attraction      20
 Interparticle interactions, mixture of competing interactions      195—196
 Interparticle interactions, repulsion      18—19 138—144
 Ionic conductors, charge carriers in      127
 Ionic conductors, charge carriers in, coarse-grained dynamics      20
 K models      52
 Kardar — Parisi — Zhang (KPZ) equation      80 170 175 176
 Kardar — Parisi — Zhang (KPZ) equation and Burgers equation      177
 Kardar — Parisi — Zhang (KPZ) equation and driven interfaces      9 175 176 177
 Kardar — Parisi — Zhang (KPZ) equation and Navier — Stokes equation      177
 Kardar — Parisi — Zhang (KPZ) equation, conserved version      179
 Kawasaki dynamics      11 95 141 191
 Kawasaki dynamics with infinite range      172
 Kawasaki dynamics, compared with Glauber spin-flip dynamics      171—172
 Kosterlitz — Thouless transition      143 186
 Langevin equation      5—6 19—25
 Langevin equation and dynamic functional      35 60 61
 Langevin equation for driven interfaces      175—178
 Langevin equation, multi-species model      131 177 181
 Langevin equation, noiseless version      78
 Langevin equation, randomly driven and multi-temperature models      97
 Langevin equation, standard model      22 27 34 78
 Langevin equation, systems driven by chemical potential gradient      109 115
 Langevin equation, systems with generic scale invariance      184
 
 | Langevin equation, systems with quenched random impurities      145—146 Langevin equation, systems with repulsive interactions      139
 Langevin equation, two-layer model      125
 Langevin force      20 109
 Layered compounds, staging in      112 122 196
 Lifshitz points      52
 Line defects, effects      118—119
 Liquids in non-equilibrium steady states      187—192
 Liquids in non-equilibrium steady states and Brillouin lines      188 189
 Liquids in non-equilibrium steady states and Rayleigh line      188
 Liquids in non-equilibrium steady states and temperature gradients      189
 Liquids in non-equilibrium steady states under shear      190—192
 Long-range correlations      25—40 93 see
 Martin — Siggia — Rose response field      35 56
 Mean-field theory      5 16—19 141 160 192
 Metropolis rates      12 128 135 141 152 153
 Microemulsions      127
 Microemulsions, model for      128 135—138
 Model A      52 80 126 139
 Model B      20 52 63 80 101
 Model C      80 126 139
 Mullins — Sekerka instability      73 89 91 120
 Multi-species models      127—138
 Multi-temperature models      95 96 98
 Multi-temperature models with Glauber dynamics      173—175
 Multicritical points      73
 Multilayer models      8 121—126 196
 Navier — Stokes equation      177 178
 Neel temperature      139
 Noise, 1/f      182 183
 Noise, correlation matrix      21—24 27—30
 Noise, North-east-centre (NEC) model      169 174 see
 One-dimensional models      9 154—155
 One-dimensional models, open boundary conditions      158 159—162
 One-dimensional models, shocks in      162—164
 One-dimensional models, systems with translational invariance      155—158
 One-dimensional models, Toom model      169—170
 One-dimensional models, two-species models      164—169
 One-loop diagram      67
 Onsager temperature      10 40
 Open boundary conditions and chemical potential gradients      108—118
 Open boundary conditions in ID models      158 159—162
 Ornstein — Zernike form [of structure factor]      29 33 189
 Path probability method      16
 Periodically (AC) driven systems      94 197
 Phase boundaries, methods of locating      17—18
 Phase diagrams, dynamics affecting      18 99
 Phase diagrams, polarized lattice gas      131
 Phase diagrams, repulsive-interaction model      140
 Phase diagrams, standard model      13
 Phase diagrams, two-species models      168
 Phase separation, dynamics      7 76—80
 Phase transitions, boundary-induced      159—160
 Phase transitions, continuous      72—73 107
 Phase transitions, effects of shear flow      189—191
 Phase transitions, signals of      41
 Phase transitions, splitting and merging      87—90
 Polarized lattice gas (PLG)      135—138
 Polymer sedimentation      9 179—183
 Potts models      8 127 174 175
 Power counting      61—66 100 102 126 141 146 172
 Power law decays above criticality      26—32 97 98
 Power law decays, critical      45
 Quenched impurities, effects      144—148 175
 Randomly driven systems      94—107
 Rayleigh — Benard experiment, equivalent for lattice gas      108
 References listed      198—213
 Reggeon field theory      172 173 185
 Related non-equlibrium steady-state systems      170—191
 Renormalization group analysis      6 21 52
 Renormalization group analysis, Gaussian dynamic models      33—37
 Renormalization group analysis, randomly driven and multi-temperature models      99—103
 Renormalization group analysis, standard model      59—73
 Renormalization group analysis, standard model, one-loop results      67—73
 Renormalization group analysis, systems with quenched random impurities      144—146
 Reptation models      127 134 165—167 180—182
 Repulsive interactions, mapping by gauge transformation      8 139
 Repulsive interactions, standard model with      18—19 138—144
 Response functions      56
 Roughening transition      81
 Roughening transition, effects of driving      179
 Rubinstein — Duke model      see "Reptation models"
 Saffman — Taylor instability      89
 Sandpile models      184—186
 Scale invariance      see "Generic scale invariance"
 Scaling hypothesis      52
 Scaling laws, with strong anisotropy      53—59 192
 Self-organized criticality (SOC)      9 183—186
 Shear, phase transitions under      189—191
 Shifted periodic boundary conditions (SPBC)      83—93
 Shifted periodic boundary conditions (SPBC) and splitting/merging transitions      87—90
 Shocks, development in ID models      159 162—164
 Shocks, microscopic nature      162 167
 Sine — Gordon      179
 Single-step surface growth model      154 162
 Singular diffusion      186
 Six vertex model      155—157
 Specific heat      47 58
 Spin-flip dynamics      17 171 see
 Staging phenomena [in layered materials]      112 122 196
 Standard [non-equilibrium] model      4
 Standard [non-equilibrium] model and dynamic mean-field theories      5 16—19
 Standard [non-equilibrium] model and multi-layer models      121—126
 Standard [non-equilibrium] model and multi-species models      127—138
 Standard [non-equilibrium] model and multi-temperature model      95 96 98
 Standard [non-equilibrium] model and randomly driven systems      95—98 193
 Standard [non-equilibrium] model with chemical potential gradient      108—112
 Standard [non-equilibrium] model with chemical potential gradient, in combination with electric field      112—118
 Standard [non-equilibrium] model with chemical potential gradient, interface stability in transverse CPG      119—121
 Standard [non-equilibrium] model with combination of direct and random drives      105—107
 Standard [non-equilibrium] model with quenched impurities      144—148
 Standard [non-equilibrium] model with repulsive interactions      18—19 138—144
 Standard [non-equilibrium] model, boundary conditions specified      12
 Standard [non-equilibrium] model, co-existence curve for      76
 Standard [non-equilibrium] model, collective behaviour      95—98 192
 Standard [non-equilibrium] model, criticisms/limitations      5 187
 Standard [non-equilibrium] model, driving field introduced      11
 Standard [non-equilibrium] model, fast rate limit      148—153
 Standard [non-equilibrium] model, finite-size effects      51—52
 Standard [non-equilibrium] model, fixed point      68
 Standard [non-equilibrium] model, interface fluctuations suppression      81—83 103—105
 Standard [non-equilibrium] model, lack of droplets in ordered states      75
 Standard [non-equilibrium] model, master equation      11
 Standard [non-equilibrium] model, mesoscopic approach      5—6 19—25 115
 Standard [non-equilibrium] model, microscopic dynamics      11—13
 Standard [non-equilibrium] model, one-dimensional models      9 154—170
 Standard [non-equilibrium] model, phase separation      76—80
 Standard [non-equilibrium] model, rates, microscopic      11—12
 Standard [non-equilibrium] model, scaling behaviour      67—73
 Strip ordering      72 74 147
 Strong anisotropic scaling      53—59 192
 Strong anisotropy      42
 Strong anisotropy, implications      44
 Structure factors      27—28
 Structure factors, above-criticality      86 100
 Structure factors, contour plots      28
 Structure factors, fluctuations in      49—50
 Structure factors, Ornstein — Zernike form      29 33 189 see
 Superconductors, flux creep in      196
 Superionic conductors      4—5 8 187
 Surface growth models      see "Driven-interface models"
 Susceptibilities      46 56—57
 Symmetry, charge conjugation (C)      15
 Symmetry, Euclidean      84
 Symmetry, Galilean      see "Galilean transformation"
 Symmetry, Ising      26 38 39 44 84 95 96 123 139
 Symmetry, O(n)      96
 Symmetry, particle conservation      19
 Symmetry, randomly driven and multi-temperature models      94—96
 Symmetry, reflection (R)      16
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |  
    |  |  |  |  |