|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Schmittmann B., Zia R.K.P. — Phase Transitions and Critical Phenomena (vol. 17) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
'Electric' field 11
Absorbing edge [of interface] 86
Anisotropic growth 77—80
Anisotropic rates see "Extreme anisotropic rates"
Anisotropic structure factors 42 43
Anisotropy see also "Strong..." "Weak
Anisotropy exponent 42 44 51 52 54—59 65 67 100—103 146
Annealed random drive, effects 94 149
Anomalous diffusion 34 146
Antiferromagnetic order 139 142
Ashkin — Teller model 8 127
Asymmetric simple exclusion process (ASEP) 154
Asymmetric simple exclusion process (ASEP) with open boundary conditions 159—161
Asymmetric simple exclusion process (ASEP) with periodic boundary conditions 155
Asymmetric simple exclusion process (ASEP), blockage introduced 163—164
Backgammon-pattern configurations 113 114
Bak — Sneppen model 186
Barber-pole configurations 130 131
Bistability, in two-temperature model 174
Blocking transitions see "Two-species models"
Blume — Emery — Griffiths model 8 127
Boundary conditions for standard model 12 see "Shifted
Boundary-induced phase transitions 159—160
Brazil nut problem 183
Bulk properties, effect of interface orientation 83—87 92
Bulk properties, phase transitions in critical region 99—103
Burgers equation and driven-interface models 177
Burgers equation and microscopic nature of shocks 162 167
Burgers equation, one-dimensional 154
Cahn — Allen equation 80 176
Cahn — Hilliard equation 76
Capillary waves 81 105
Catalytic process 172
Chemical potential gradients (CPGs) in combination with electric fields 112—118
Chemical potential gradients (CPGs), effects 108—112
Chemical potential gradients (CPGs), transverse CPG, interface stability affected 119—121
Chemical processes, modelling of 172
Cluster variational method 16
Cluster variational method, dynamic version 16—17
Co-existence curves 18 74—76
Co-existence curves for standard model 76
Co-existence curves, fast rate limit 152 153
Competing [conservation/non-conservation] dynamics 171—173
Competing [repulsion/attraction] interactions 195—196
Configurations during phase separation 77
Configurations for polarized lattice gas 136—137
Configurations with shifted periodic boundary conditions 85 87
Configurations, backgammon-board pattern 113 114
Configurations, barber-pole pattern 130 131
Correlations, long-range 25—40 93 see
Critical dimension, upper 61—63 94 100
Critical exponents, randomly driven and multi-temperature models 101 103
Critical exponents, standard model from simulations 44—46 50
Critical exponents, standard model from theory 65—66 67—71
Critical exponents, standard model, relations 54—59
Critical phenomena 6—7 40—73
Critical phenomena, simulation studies 40—52
Critical phenomena, theoretical investigations 52—73
Critical temperature, Onsager value 10 40
Critical temperature, randomly driven and multi-temperature models 103
Critical temperature, standard model 15 18 44
Critical temperature, system with repulsive interactions 141
Dangerously irrelevant operators 36 37 63 70 100
Dipolar systems, critical properties 102
Directed percolation 172
Domain splitting and merging 87—90
Domain splitting and merging, critical angle 89
Driven-interface models 175—179
Dynamic functional 6 35 60
Dynamic functional, randomly driven and multi-temperature models 103
Dynamic functional, standard model 35 61 62
Dynamic mean-field theory 5 16—19 141
Dynamic scaling 78
Earthquake models 186
Entropy, maximum-entropy principle 18
Epidemics 172
Escher, M.C. 12
Evaporating edge [of interface] 86
Excess energy 84—85
Excess energy as function of shift angle 88
Exponential decays in two-point correlation functions 32—33
Extreme anisotropic rates 148—154
Fast rate limit [for standard model] 8 149—154
FDT see "Fluctuation-dissipation theorem"
Finger formation 88 112—118
Finger formation, factors affecting 91 92 117
Finite-size scaling in mean-field approaches 16
Finite-size scaling, anisotropic 44 51—52 103 147
Finite-size scaling, isotropic 7 44 51 52 140 143
Fixed-line, Gaussian 33—37
fixed-point see also "Standard model" "Wilson
Fixed-point, Hamiltonians 101—102 173
Fixed-point, randomly driven and multi-temperature models 101
Fluctuation-dissipation theorem (FDT) 21 101
Fluctuation-dissipation theorem (FDT), violation of 23 25 35 192—193
Fluctuation-dissipation theorem (FDT), violation of, effects 24 38—39 104
Fluids, non-equilibrium steady states 187—191
Flux creep 196
Fokker — Planck equation 25
Forest fire models 186
Galilean transformation 63 145
Gaussian dynamic models 33—37
Gel electrophoresis 9 127 179 182—183
Generic scale invariance 26—37 183—186
Generic scale invariance, compared with self-organized criticality 185
Gibbs — Thomson relation 90 119
Glauber spin-flip dynamics 17 171
Glauber spin-flip dynamics, compared with Kawasaki dynamics 171—172
Glauber spin-flip dynamics, multi-temperature models with 173—175
Goldstone modes 104 133
Green's functions, connected 60 64
Ground states [for half-filled lattices] 13
Harris criterion 144
Hydrodynamic approach 109
Hydrodynamics, linearized equations 187—189
Intercalation 112
Interface orientation, bulk properties affected by 83—87 92
Interface orientation, finger formation in combined drive systems affected by 117
Interface stability, effect of transverse chemical potential gradient 119
Interfacial energy 83
Interfacial fluctuations, anomalous correlations 103—105
Interfacial properties, randomly driven and two-temperature models 103—105
Interfacial properties, standard model 80—93
Interfacial roughness, suppression of 7 81—83
Internal energy 47 58
Internal energy, fluctuations in 49—50
Interparticle interactions, attraction 20
Interparticle interactions, mixture of competing interactions 195—196
Interparticle interactions, repulsion 18—19 138—144
Ionic conductors, charge carriers in 127
Ionic conductors, charge carriers in, coarse-grained dynamics 20
K models 52
Kardar — Parisi — Zhang (KPZ) equation 80 170 175 176
Kardar — Parisi — Zhang (KPZ) equation and Burgers equation 177
Kardar — Parisi — Zhang (KPZ) equation and driven interfaces 9 175 176 177
Kardar — Parisi — Zhang (KPZ) equation and Navier — Stokes equation 177
Kardar — Parisi — Zhang (KPZ) equation, conserved version 179
Kawasaki dynamics 11 95 141 191
Kawasaki dynamics with infinite range 172
Kawasaki dynamics, compared with Glauber spin-flip dynamics 171—172
Kosterlitz — Thouless transition 143 186
Langevin equation 5—6 19—25
Langevin equation and dynamic functional 35 60 61
Langevin equation for driven interfaces 175—178
Langevin equation, multi-species model 131 177 181
Langevin equation, noiseless version 78
Langevin equation, randomly driven and multi-temperature models 97
Langevin equation, standard model 22 27 34 78
Langevin equation, systems driven by chemical potential gradient 109 115
Langevin equation, systems with generic scale invariance 184
| Langevin equation, systems with quenched random impurities 145—146
Langevin equation, systems with repulsive interactions 139
Langevin equation, two-layer model 125
Langevin force 20 109
Layered compounds, staging in 112 122 196
Lifshitz points 52
Line defects, effects 118—119
Liquids in non-equilibrium steady states 187—192
Liquids in non-equilibrium steady states and Brillouin lines 188 189
Liquids in non-equilibrium steady states and Rayleigh line 188
Liquids in non-equilibrium steady states and temperature gradients 189
Liquids in non-equilibrium steady states under shear 190—192
Long-range correlations 25—40 93 see
Martin — Siggia — Rose response field 35 56
Mean-field theory 5 16—19 141 160 192
Metropolis rates 12 128 135 141 152 153
Microemulsions 127
Microemulsions, model for 128 135—138
Model A 52 80 126 139
Model B 20 52 63 80 101
Model C 80 126 139
Mullins — Sekerka instability 73 89 91 120
Multi-species models 127—138
Multi-temperature models 95 96 98
Multi-temperature models with Glauber dynamics 173—175
Multicritical points 73
Multilayer models 8 121—126 196
Navier — Stokes equation 177 178
Neel temperature 139
Noise, 1/f 182 183
Noise, correlation matrix 21—24 27—30
Noise, North-east-centre (NEC) model 169 174 see
One-dimensional models 9 154—155
One-dimensional models, open boundary conditions 158 159—162
One-dimensional models, shocks in 162—164
One-dimensional models, systems with translational invariance 155—158
One-dimensional models, Toom model 169—170
One-dimensional models, two-species models 164—169
One-loop diagram 67
Onsager temperature 10 40
Open boundary conditions and chemical potential gradients 108—118
Open boundary conditions in ID models 158 159—162
Ornstein — Zernike form [of structure factor] 29 33 189
Path probability method 16
Periodically (AC) driven systems 94 197
Phase boundaries, methods of locating 17—18
Phase diagrams, dynamics affecting 18 99
Phase diagrams, polarized lattice gas 131
Phase diagrams, repulsive-interaction model 140
Phase diagrams, standard model 13
Phase diagrams, two-species models 168
Phase separation, dynamics 7 76—80
Phase transitions, boundary-induced 159—160
Phase transitions, continuous 72—73 107
Phase transitions, effects of shear flow 189—191
Phase transitions, signals of 41
Phase transitions, splitting and merging 87—90
Polarized lattice gas (PLG) 135—138
Polymer sedimentation 9 179—183
Potts models 8 127 174 175
Power counting 61—66 100 102 126 141 146 172
Power law decays above criticality 26—32 97 98
Power law decays, critical 45
Quenched impurities, effects 144—148 175
Randomly driven systems 94—107
Rayleigh — Benard experiment, equivalent for lattice gas 108
References listed 198—213
Reggeon field theory 172 173 185
Related non-equlibrium steady-state systems 170—191
Renormalization group analysis 6 21 52
Renormalization group analysis, Gaussian dynamic models 33—37
Renormalization group analysis, randomly driven and multi-temperature models 99—103
Renormalization group analysis, standard model 59—73
Renormalization group analysis, standard model, one-loop results 67—73
Renormalization group analysis, systems with quenched random impurities 144—146
Reptation models 127 134 165—167 180—182
Repulsive interactions, mapping by gauge transformation 8 139
Repulsive interactions, standard model with 18—19 138—144
Response functions 56
Roughening transition 81
Roughening transition, effects of driving 179
Rubinstein — Duke model see "Reptation models"
Saffman — Taylor instability 89
Sandpile models 184—186
Scale invariance see "Generic scale invariance"
Scaling hypothesis 52
Scaling laws, with strong anisotropy 53—59 192
Self-organized criticality (SOC) 9 183—186
Shear, phase transitions under 189—191
Shifted periodic boundary conditions (SPBC) 83—93
Shifted periodic boundary conditions (SPBC) and splitting/merging transitions 87—90
Shocks, development in ID models 159 162—164
Shocks, microscopic nature 162 167
Sine — Gordon 179
Single-step surface growth model 154 162
Singular diffusion 186
Six vertex model 155—157
Specific heat 47 58
Spin-flip dynamics 17 171 see
Staging phenomena [in layered materials] 112 122 196
Standard [non-equilibrium] model 4
Standard [non-equilibrium] model and dynamic mean-field theories 5 16—19
Standard [non-equilibrium] model and multi-layer models 121—126
Standard [non-equilibrium] model and multi-species models 127—138
Standard [non-equilibrium] model and multi-temperature model 95 96 98
Standard [non-equilibrium] model and randomly driven systems 95—98 193
Standard [non-equilibrium] model with chemical potential gradient 108—112
Standard [non-equilibrium] model with chemical potential gradient, in combination with electric field 112—118
Standard [non-equilibrium] model with chemical potential gradient, interface stability in transverse CPG 119—121
Standard [non-equilibrium] model with combination of direct and random drives 105—107
Standard [non-equilibrium] model with quenched impurities 144—148
Standard [non-equilibrium] model with repulsive interactions 18—19 138—144
Standard [non-equilibrium] model, boundary conditions specified 12
Standard [non-equilibrium] model, co-existence curve for 76
Standard [non-equilibrium] model, collective behaviour 95—98 192
Standard [non-equilibrium] model, criticisms/limitations 5 187
Standard [non-equilibrium] model, driving field introduced 11
Standard [non-equilibrium] model, fast rate limit 148—153
Standard [non-equilibrium] model, finite-size effects 51—52
Standard [non-equilibrium] model, fixed point 68
Standard [non-equilibrium] model, interface fluctuations suppression 81—83 103—105
Standard [non-equilibrium] model, lack of droplets in ordered states 75
Standard [non-equilibrium] model, master equation 11
Standard [non-equilibrium] model, mesoscopic approach 5—6 19—25 115
Standard [non-equilibrium] model, microscopic dynamics 11—13
Standard [non-equilibrium] model, one-dimensional models 9 154—170
Standard [non-equilibrium] model, phase separation 76—80
Standard [non-equilibrium] model, rates, microscopic 11—12
Standard [non-equilibrium] model, scaling behaviour 67—73
Strip ordering 72 74 147
Strong anisotropic scaling 53—59 192
Strong anisotropy 42
Strong anisotropy, implications 44
Structure factors 27—28
Structure factors, above-criticality 86 100
Structure factors, contour plots 28
Structure factors, fluctuations in 49—50
Structure factors, Ornstein — Zernike form 29 33 189 see
Superconductors, flux creep in 196
Superionic conductors 4—5 8 187
Surface growth models see "Driven-interface models"
Susceptibilities 46 56—57
Symmetry, charge conjugation (C) 15
Symmetry, Euclidean 84
Symmetry, Galilean see "Galilean transformation"
Symmetry, Ising 26 38 39 44 84 95 96 123 139
Symmetry, O(n) 96
Symmetry, particle conservation 19
Symmetry, randomly driven and multi-temperature models 94—96
Symmetry, reflection (R) 16
|
|
|
Ðåêëàìà |
|
|
|
|
|
|