Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Schmittmann B., Zia R.K.P. — Phase Transitions and Critical Phenomena (vol. 17)
Schmittmann B., Zia R.K.P. — Phase Transitions and Critical Phenomena (vol. 17)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Phase Transitions and Critical Phenomena (vol. 17)

Àâòîðû: Schmittmann B., Zia R.K.P.

ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 220

Äîáàâëåíà â êàòàëîã: 23.03.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
'Electric' field      11
Absorbing edge [of interface]      86
Anisotropic growth      77—80
Anisotropic rates      see "Extreme anisotropic rates"
Anisotropic structure factors      42 43
Anisotropy      see also "Strong..." "Weak
Anisotropy exponent      42 44 51 52 54—59 65 67 100—103 146
Annealed random drive, effects      94 149
Anomalous diffusion      34 146
Antiferromagnetic order      139 142
Ashkin — Teller model      8 127
Asymmetric simple exclusion process (ASEP)      154
Asymmetric simple exclusion process (ASEP) with open boundary conditions      159—161
Asymmetric simple exclusion process (ASEP) with periodic boundary conditions      155
Asymmetric simple exclusion process (ASEP), blockage introduced      163—164
Backgammon-pattern configurations      113 114
Bak — Sneppen model      186
Barber-pole configurations      130 131
Bistability, in two-temperature model      174
Blocking transitions      see "Two-species models"
Blume — Emery — Griffiths model      8 127
Boundary conditions for standard model      12 see "Shifted
Boundary-induced phase transitions      159—160
Brazil nut problem      183
Bulk properties, effect of interface orientation      83—87 92
Bulk properties, phase transitions in critical region      99—103
Burgers equation and driven-interface models      177
Burgers equation and microscopic nature of shocks      162 167
Burgers equation, one-dimensional      154
Cahn — Allen equation      80 176
Cahn — Hilliard equation      76
Capillary waves      81 105
Catalytic process      172
Chemical potential gradients (CPGs) in combination with electric fields      112—118
Chemical potential gradients (CPGs), effects      108—112
Chemical potential gradients (CPGs), transverse CPG, interface stability affected      119—121
Chemical processes, modelling of      172
Cluster variational method      16
Cluster variational method, dynamic version      16—17
Co-existence curves      18 74—76
Co-existence curves for standard model      76
Co-existence curves, fast rate limit      152 153
Competing [conservation/non-conservation] dynamics      171—173
Competing [repulsion/attraction] interactions      195—196
Configurations during phase separation      77
Configurations for polarized lattice gas      136—137
Configurations with shifted periodic boundary conditions      85 87
Configurations, backgammon-board pattern      113 114
Configurations, barber-pole pattern      130 131
Correlations, long-range      25—40 93 see
Critical dimension, upper      61—63 94 100
Critical exponents, randomly driven and multi-temperature models      101 103
Critical exponents, standard model from simulations      44—46 50
Critical exponents, standard model from theory      65—66 67—71
Critical exponents, standard model, relations      54—59
Critical phenomena      6—7 40—73
Critical phenomena, simulation studies      40—52
Critical phenomena, theoretical investigations      52—73
Critical temperature, Onsager value      10 40
Critical temperature, randomly driven and multi-temperature models      103
Critical temperature, standard model      15 18 44
Critical temperature, system with repulsive interactions      141
Dangerously irrelevant operators      36 37 63 70 100
Dipolar systems, critical properties      102
Directed percolation      172
Domain splitting and merging      87—90
Domain splitting and merging, critical angle      89
Driven-interface models      175—179
Dynamic functional      6 35 60
Dynamic functional, randomly driven and multi-temperature models      103
Dynamic functional, standard model      35 61 62
Dynamic mean-field theory      5 16—19 141
Dynamic scaling      78
Earthquake models      186
Entropy, maximum-entropy principle      18
Epidemics      172
Escher, M.C.      12
Evaporating edge [of interface]      86
Excess energy      84—85
Excess energy as function of shift angle      88
Exponential decays in two-point correlation functions      32—33
Extreme anisotropic rates      148—154
Fast rate limit [for standard model]      8 149—154
FDT      see "Fluctuation-dissipation theorem"
Finger formation      88 112—118
Finger formation, factors affecting      91 92 117
Finite-size scaling in mean-field approaches      16
Finite-size scaling, anisotropic      44 51—52 103 147
Finite-size scaling, isotropic      7 44 51 52 140 143
Fixed-line, Gaussian      33—37
fixed-point      see also "Standard model" "Wilson
Fixed-point, Hamiltonians      101—102 173
Fixed-point, randomly driven and multi-temperature models      101
Fluctuation-dissipation theorem (FDT)      21 101
Fluctuation-dissipation theorem (FDT), violation of      23 25 35 192—193
Fluctuation-dissipation theorem (FDT), violation of, effects      24 38—39 104
Fluids, non-equilibrium steady states      187—191
Flux creep      196
Fokker — Planck equation      25
Forest fire models      186
Galilean transformation      63 145
Gaussian dynamic models      33—37
Gel electrophoresis      9 127 179 182—183
Generic scale invariance      26—37 183—186
Generic scale invariance, compared with self-organized criticality      185
Gibbs — Thomson relation      90 119
Glauber spin-flip dynamics      17 171
Glauber spin-flip dynamics, compared with Kawasaki dynamics      171—172
Glauber spin-flip dynamics, multi-temperature models with      173—175
Goldstone modes      104 133
Green's functions, connected      60 64
Ground states [for half-filled lattices]      13
Harris criterion      144
Hydrodynamic approach      109
Hydrodynamics, linearized equations      187—189
Intercalation      112
Interface orientation, bulk properties affected by      83—87 92
Interface orientation, finger formation in combined drive systems affected by      117
Interface stability, effect of transverse chemical potential gradient      119
Interfacial energy      83
Interfacial fluctuations, anomalous correlations      103—105
Interfacial properties, randomly driven and two-temperature models      103—105
Interfacial properties, standard model      80—93
Interfacial roughness, suppression of      7 81—83
Internal energy      47 58
Internal energy, fluctuations in      49—50
Interparticle interactions, attraction      20
Interparticle interactions, mixture of competing interactions      195—196
Interparticle interactions, repulsion      18—19 138—144
Ionic conductors, charge carriers in      127
Ionic conductors, charge carriers in, coarse-grained dynamics      20
K models      52
Kardar — Parisi — Zhang (KPZ) equation      80 170 175 176
Kardar — Parisi — Zhang (KPZ) equation and Burgers equation      177
Kardar — Parisi — Zhang (KPZ) equation and driven interfaces      9 175 176 177
Kardar — Parisi — Zhang (KPZ) equation and Navier — Stokes equation      177
Kardar — Parisi — Zhang (KPZ) equation, conserved version      179
Kawasaki dynamics      11 95 141 191
Kawasaki dynamics with infinite range      172
Kawasaki dynamics, compared with Glauber spin-flip dynamics      171—172
Kosterlitz — Thouless transition      143 186
Langevin equation      5—6 19—25
Langevin equation and dynamic functional      35 60 61
Langevin equation for driven interfaces      175—178
Langevin equation, multi-species model      131 177 181
Langevin equation, noiseless version      78
Langevin equation, randomly driven and multi-temperature models      97
Langevin equation, standard model      22 27 34 78
Langevin equation, systems driven by chemical potential gradient      109 115
Langevin equation, systems with generic scale invariance      184
Langevin equation, systems with quenched random impurities      145—146
Langevin equation, systems with repulsive interactions      139
Langevin equation, two-layer model      125
Langevin force      20 109
Layered compounds, staging in      112 122 196
Lifshitz points      52
Line defects, effects      118—119
Liquids in non-equilibrium steady states      187—192
Liquids in non-equilibrium steady states and Brillouin lines      188 189
Liquids in non-equilibrium steady states and Rayleigh line      188
Liquids in non-equilibrium steady states and temperature gradients      189
Liquids in non-equilibrium steady states under shear      190—192
Long-range correlations      25—40 93 see
Martin — Siggia — Rose response field      35 56
Mean-field theory      5 16—19 141 160 192
Metropolis rates      12 128 135 141 152 153
Microemulsions      127
Microemulsions, model for      128 135—138
Model A      52 80 126 139
Model B      20 52 63 80 101
Model C      80 126 139
Mullins — Sekerka instability      73 89 91 120
Multi-species models      127—138
Multi-temperature models      95 96 98
Multi-temperature models with Glauber dynamics      173—175
Multicritical points      73
Multilayer models      8 121—126 196
Navier — Stokes equation      177 178
Neel temperature      139
Noise, 1/f      182 183
Noise, correlation matrix      21—24 27—30
Noise, North-east-centre (NEC) model      169 174 see
One-dimensional models      9 154—155
One-dimensional models, open boundary conditions      158 159—162
One-dimensional models, shocks in      162—164
One-dimensional models, systems with translational invariance      155—158
One-dimensional models, Toom model      169—170
One-dimensional models, two-species models      164—169
One-loop diagram      67
Onsager temperature      10 40
Open boundary conditions and chemical potential gradients      108—118
Open boundary conditions in ID models      158 159—162
Ornstein — Zernike form [of structure factor]      29 33 189
Path probability method      16
Periodically (AC) driven systems      94 197
Phase boundaries, methods of locating      17—18
Phase diagrams, dynamics affecting      18 99
Phase diagrams, polarized lattice gas      131
Phase diagrams, repulsive-interaction model      140
Phase diagrams, standard model      13
Phase diagrams, two-species models      168
Phase separation, dynamics      7 76—80
Phase transitions, boundary-induced      159—160
Phase transitions, continuous      72—73 107
Phase transitions, effects of shear flow      189—191
Phase transitions, signals of      41
Phase transitions, splitting and merging      87—90
Polarized lattice gas (PLG)      135—138
Polymer sedimentation      9 179—183
Potts models      8 127 174 175
Power counting      61—66 100 102 126 141 146 172
Power law decays above criticality      26—32 97 98
Power law decays, critical      45
Quenched impurities, effects      144—148 175
Randomly driven systems      94—107
Rayleigh — Benard experiment, equivalent for lattice gas      108
References listed      198—213
Reggeon field theory      172 173 185
Related non-equlibrium steady-state systems      170—191
Renormalization group analysis      6 21 52
Renormalization group analysis, Gaussian dynamic models      33—37
Renormalization group analysis, randomly driven and multi-temperature models      99—103
Renormalization group analysis, standard model      59—73
Renormalization group analysis, standard model, one-loop results      67—73
Renormalization group analysis, systems with quenched random impurities      144—146
Reptation models      127 134 165—167 180—182
Repulsive interactions, mapping by gauge transformation      8 139
Repulsive interactions, standard model with      18—19 138—144
Response functions      56
Roughening transition      81
Roughening transition, effects of driving      179
Rubinstein — Duke model      see "Reptation models"
Saffman — Taylor instability      89
Sandpile models      184—186
Scale invariance      see "Generic scale invariance"
Scaling hypothesis      52
Scaling laws, with strong anisotropy      53—59 192
Self-organized criticality (SOC)      9 183—186
Shear, phase transitions under      189—191
Shifted periodic boundary conditions (SPBC)      83—93
Shifted periodic boundary conditions (SPBC) and splitting/merging transitions      87—90
Shocks, development in ID models      159 162—164
Shocks, microscopic nature      162 167
Sine — Gordon      179
Single-step surface growth model      154 162
Singular diffusion      186
Six vertex model      155—157
Specific heat      47 58
Spin-flip dynamics      17 171 see
Staging phenomena [in layered materials]      112 122 196
Standard [non-equilibrium] model      4
Standard [non-equilibrium] model and dynamic mean-field theories      5 16—19
Standard [non-equilibrium] model and multi-layer models      121—126
Standard [non-equilibrium] model and multi-species models      127—138
Standard [non-equilibrium] model and multi-temperature model      95 96 98
Standard [non-equilibrium] model and randomly driven systems      95—98 193
Standard [non-equilibrium] model with chemical potential gradient      108—112
Standard [non-equilibrium] model with chemical potential gradient, in combination with electric field      112—118
Standard [non-equilibrium] model with chemical potential gradient, interface stability in transverse CPG      119—121
Standard [non-equilibrium] model with combination of direct and random drives      105—107
Standard [non-equilibrium] model with quenched impurities      144—148
Standard [non-equilibrium] model with repulsive interactions      18—19 138—144
Standard [non-equilibrium] model, boundary conditions specified      12
Standard [non-equilibrium] model, co-existence curve for      76
Standard [non-equilibrium] model, collective behaviour      95—98 192
Standard [non-equilibrium] model, criticisms/limitations      5 187
Standard [non-equilibrium] model, driving field introduced      11
Standard [non-equilibrium] model, fast rate limit      148—153
Standard [non-equilibrium] model, finite-size effects      51—52
Standard [non-equilibrium] model, fixed point      68
Standard [non-equilibrium] model, interface fluctuations suppression      81—83 103—105
Standard [non-equilibrium] model, lack of droplets in ordered states      75
Standard [non-equilibrium] model, master equation      11
Standard [non-equilibrium] model, mesoscopic approach      5—6 19—25 115
Standard [non-equilibrium] model, microscopic dynamics      11—13
Standard [non-equilibrium] model, one-dimensional models      9 154—170
Standard [non-equilibrium] model, phase separation      76—80
Standard [non-equilibrium] model, rates, microscopic      11—12
Standard [non-equilibrium] model, scaling behaviour      67—73
Strip ordering      72 74 147
Strong anisotropic scaling      53—59 192
Strong anisotropy      42
Strong anisotropy, implications      44
Structure factors      27—28
Structure factors, above-criticality      86 100
Structure factors, contour plots      28
Structure factors, fluctuations in      49—50
Structure factors, Ornstein — Zernike form      29 33 189 see
Superconductors, flux creep in      196
Superionic conductors      4—5 8 187
Surface growth models      see "Driven-interface models"
Susceptibilities      46 56—57
Symmetry, charge conjugation (C)      15
Symmetry, Euclidean      84
Symmetry, Galilean      see "Galilean transformation"
Symmetry, Ising      26 38 39 44 84 95 96 123 139
Symmetry, O(n)      96
Symmetry, particle conservation      19
Symmetry, randomly driven and multi-temperature models      94—96
Symmetry, reflection (R)      16
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå