Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Calogero F. — Variable phase approach to potential scattering
Calogero F. — Variable phase approach to potential scattering

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Variable phase approach to potential scattering

Автор: Calogero F.

Аннотация:

The subject of this monograph is nonrelativistic scattering on a spherically symmetrical potential. More specifically, the discussion is focused on the scattering phase shift b_l, which, for each value of the angular momentum l, represents all the effect of the potential that is relevant for the quantum mechanical description of elastic scattering. The treatment makes no attempt to go beyond the standards of mathematical rigor that are usually considered satisfactory in physics. In fact, whenever possible the emphasis is on the physical understanding rather than the mathematical formalism. It is nevertheless hoped that the number of imprecise or incorrect statements will be minimal.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1967

Количество страниц: 249

Добавлена в каталог: 07.04.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Allis, W. P.      1 20 236
Amplitude function      31ff 116ff 127 130
Analyticity properties of scattering parameters, as functions of angular momentum      2 235
Analyticity properties of scattering parameters, as functions of energy      2 143ff 235
Analyticity properties of scattering parameters, as functions of potential strength      100
Antibound state      156 159 233ff
Antivirtual state      156 159 233ff
Asymptotic convergence of pole functions      171ff
Babikov, V. V.      238
Bailey, P. B.      238
Bargmann, V.      182 183 184 237
Bellman, R. E.      205 207 237 238
Bergmann, O.      2 236
Bertocchi, L.      219(49) 237
Beyer, W. A.      239
Bonham, R. A.      2(9) 236
Born approximation      43ff 53ff 77ff 216
Bound states      143ff
Bounds on energies of bound states      195ff
Bounds on energy derivative of phase shift      38ff
Bounds on number of bound states      182ff
Bounds on scattering length      70ff
Bounds on scattering phase shift      37ff 51ff
Bounds on zero-energy cross section      70ff
Bromwich, T. J.      201(46) 237
Brownell, J. H.      184(44) 237
Brysk, H.      238
Buchanan, M. L.      238
Calogero, F.      2(13 14 15 16 17 18 19 24 25) 37(13) 92(13 16) 97(19) 98(19) 108(19) 109(19) 113(15 17) 115(17) 116(17) 119(17) 120(15 17 25) 125(15) 129(18) 173(13) 176(37) 182(38-41) 183(41) 185(41) 187(40) 189(38 39) 217(13) 222(13) 236 237
Chadan, K.      2(26) 41(30) 236
Charap, J. M.      2(25) 120(25) 236
Cohn, J. H. E.      239
Comparison functions      86 114
Condition for existence of bound states      187 189ff
Cosenza, G.      239
Cotangent function      17
Courant, R.      1 236
Cox, J. R.      2(22) 2(23) 140 141(22 23) 236
Cross section, absorption      133
Cross section, differential      3 121
Cross section, total      70ff
Curtiss, C. F.      238
Dashen, R. F.      2(11) 236 238
de Alfaro, V.      234(52) 237
Degasperis, A.      2(20) 136 236
Dirac equation      98 120
Drukarev, G. F.      2(3) 236
Eigenphase function      140ff
Eigenphase shift      139ff
Extremum principle for first-order differential equations      205ff
Extremum principle for scattering phase shift      50 57 93ff
Ferreira, E. M.      154(36) 235(36) 236
Feshbach, H.      202 237
Fivel, D. I.      239
Fl$\ddot{u}$gge, S.      238
Fonda, L.      239
Franchetti, S.      2(7) 236
Fubini, S.      219(49) 237
Furlan, G.      219(49) 237
Ghirardi, G. C.      239
Glauber, R. G.      46 236
Guenn$\acute{e}$gu$\grave{e}$s, J. Y.      2(26) 236
High-energy behavior of scattering phase shift      6 105ff 108 125 215ff 239
Hilbert, D.      1 236
Improved Born approximation      46 54ff 77ff
Interpolating functions      12
Jagannathan, G.      176(37) 237
Jost function      35
Kalaba, R. E.      45 236 238
Kane, J.      238
Karle, J.      2(9) 236
Keller, J. B.      2(10) 67 68(10) 181 236
Klar, H.      238
Klein — Gordon equation      98
Klein, A.      239
Kolodner, I. I.      201 238
Kouri, D. J.      238
Kr$\ddot{u}$uger, H.      238
Kynch, G. J.      2(5) 120(5) 236
Levinson, N.      19(27) 71(27) 176 236
Levinson’s theorem      19 21 71 147 150 153 157 160 176ff 228
Levy, B. R.      2(10) 67 68(10) 181 236
Limi$\acute{c}$, N.      219(50) 237
Low-energy behavior of scattering phase shift      67ff 109
May, R. M.      238
McKellar, B. H. J.      238
Mixing parameter      139ff
Mixing parameter function      140ff
Moli$\grave{e}$re, G.      46 236
Morse, P. M.      1 20 202 236 237
Newton, R. G.      35(28) 36(28) 179(28) 217(28) 234(51) 236 237
Nicholson, J. W.      238
Number of bound states      150 153 187 228 239
Numerical computation of bound state energies      173
Numerical computation of pole functions      160
Numerical computation of scattering phase shifts      20 21ff 112
Olsson, P. O.      2(6) 236
Partial wave amplitude      5
Parzen, G.      125 236
Percival, C.      239
Perlmutter, A.      2(22) 140 141(22) 236
Phase equation      11ff 13ff 87ff 116ff 124 127ff 130ff
Phase functions      11ff 13ff 18 21ff 115ff 130
Phase functions, radial wave function and      31ff 86ff 130
Phase shift      see “Scattering phase shift”
Pole equation      145ff 154ff 225ff
Pole function      145ff 154ff 223ff
Potential, centrifugal      4 81 89ff 108 151
Potential, complex      132ff
Potential, Coulomb      3 78ff 128 154 235
Potential, Dirac distribution      53 185 194
Potential, effective for Dirac particles      122
Potential, exponential      189
Potential, Hulth$\acute{e}$n      190
Potential, infinitely repulsive      15 103 108
Potential, inverse power      110
Potential, multichannel      136ff
Potential, nonlocal      129ff
Potential, piecewise constant      160ff
Potential, regular      4
Potential, separable      132
Potential, singular      4 97ff
Potential, square-well      18 65 82ff 154ff 185 187 189 194
Potential, Yukawa      21ff 59ff 89 160 194
Radial wave function      see “Wave function radial”
Ravenhall, D. G.      2(17) 113(17) 115(17) 116(17) 119(17) 120(17) 236
Reactance matrix      137 139ff
Regge, T.      234(52) 237
Rimini, A.      239
Roberts, M. J.      239
Rosendorff, S.      46 236
S matrix      77 133 137
S matrix function      72 35 133 138ff 221
Scattering amplitude      3ff 121
Scattering amplitude function      72 221
Scattering length      69ff 77ff 109ff
Scattering phase shift      5 11 121 124 127 131
Schey, H. M.      239
Schroedinger Equation, radial      4 117 129 136
Schroedinger equation, three dimensional      3 129
Schwartz, J. L.      239
Schwinger, J.      196 197 237
Spruch, L.      2(12) 236 239
Surynarayan, E. R.      238
Swanson, D. R.      2(8) 236
Tangent function      77 17 115
Tani, S.      46 236
Teixeira, A. F. F.      154(36) 235(36) 236
Tiesz, T.      238
UNITS      2 120 136
Variational principle for first-order differential equations      205ff
Variational principle for scattering length      72ff 77
Variational principle for scattering phase shift      48 57
Verde, M.      239
Virtual state      156 233ff
Watson, G. N.      201(45) 237
Wave function, radial      4ff 31ff
Wave function, three dimensional      3 120 129
Wigner, E. P.      41 106 236
Wigner’s theorem      47 106
Wing, G. M.      238
Zemach, C.      2(21) 236
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2018
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте