Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Zakharov V.D. — Gravitational waves in Einstein's theory
Zakharov V.D. — Gravitational waves in Einstein's theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Gravitational waves in Einstein's theory

Автор: Zakharov V.D.

Аннотация:

In physics, gravitational waves are ripples in the curvature of spacetime which propagate as a wave, travelling outward from the source. Predicted to exist by Albert Einstein in 1916 on the basis of his theory of general relativity, gravitational waves theoretically transport energy as gravitational radiation. Sources of detectable gravitational waves could possibly include binary star systems composed of white dwarfs, neutron stars, or black holes. The existence of gravitational waves is possibly a consequence of the Lorentz invariance of general relativity since it brings the concept of a limiting speed of propagation of the physical interactions with it. Gravitational waves cannot exist in the Newtonian theory of gravitation, in which physical interactions propagate at infinite speed.
Although gravitational radiation has not been directly detected, there is indirect evidence for its existence. For example, the 1993 Nobel Prize in Physics was awarded for measurements of the Hulse-Taylor binary system which suggests gravitational waves are more than mathematical anomalies. Various gravitational wave detectors exist. However, they remain unsuccessful in detecting such phenomena.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1973

Количество страниц: 201

Добавлена в каталог: 22.03.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Polarization (parameters of)      86
Potential(s), advanced      102
Potential(s), expanded      16
Potential(s), Newtonian      5
Potential(s), retarded      3 4 102 104
Poynting vector      50
Poynting vector, electromagnetic      50
PRASAD, H.      xix
Price, R.      140
Propagation trajectories      see Trajectories of propagation
Pseudotensor      10
Pseudotensor, energy-momentum      6 11 139
Pseudotensor, Lifshits (energy)      138
Pulsars      12 138 142 143 144
PUSTOVOIT, V.I.      xix
Quadiupole moment      101 104 138 141 142
Quadrupole harmonic mass-detector      142
Quasars      12 138 141 148 149
Quasi - Maxwell equations      33
RADHAKRISHNA.L.      xvii 62
Radiation      see Electromagnetic radiation; Gravitational radiation
Rainich - Wheeler algebraic conditions      67 95
Rashevskii, P.K.      74
Rays      26 29
Rays, electromagnetic      30
Rays, geodesic      107 108 109 111 112 113 114
Rays, geodesic, congruence of      110 114
Rays, gravitational      30 78 81 90
Rays, light      97
Rees, M.J.      xx 144
Retarded time      97 99
Riemann tensor      see Tensor Riemann
Riemann vector      see Vector Riemann
Robinson - Trautman definition      79
Robinson - Trautman metric      46 81 82
Robinson - Trautman metric, Schwarzschild type of wave-zone term for      106
Robinson, I.      xviii 45 79 81 83 85 95 105 122
RODICHEV,V.I.      xviii
Rosen, N.      viii xix 9 86 108 120 123
ROTENBERG, M.A.      xix 7 10 11
Roy, S.      xvii 62
RUDENKO,V.N.      xix 142
RUKMAN, G.I.      xix
RUMER, Yu.B.      xix
Sachs metric      105 107 108 111
Sachs peeling formula      113
Sachs peeling theorem      109 110 111 112
Sachs, R.      xvii xviii xx 39 70 80 84 105 106 107 108 109 113
SASTRY.K.S.      xx
SAVEL'EVA,N.A.      63
Scalar(s), fundamental      53
Scalar(s), potentials of the gravitational-inertial field      116
Schechter, M.      21 24
Scheffler, H.      149
Schild, A.      80 82 83
Schwarzschild field      6 8
Schwarzschild mass      10
Schwarzschild metric      7 8 10 16 82 130
Schwarzschild solution      7 139
Schwarzschild type of wave-zone term      106
Schwarzschild, K.      6 7 8 10 16
SCIAMA.D.W.      xviii 144
Shadow (gravitational)      79 80 84 108
SHAMIR, H.      xix 9
SHEPLEY, L.      80
SHIROKOV,M.F.      xviii
SHKOLOVSKII, I.S.      xx 138
SHULIKOV SKII, V      1 14
SIGNORE, M.      xviii
SINGH,R.A.      xvii
SINSKY, J.      142
SLABKII, L.I.      xx
Sobolev, S.L.      3
SOKOL      1
SOLODOVNKOV, A.S.      90
Solution of gravitational wave equation      104 120
Solution of gravitational wave equation, Einstein - Rosen      108
Solution of gravitational wave equation, Jordan- Ehlers      108
Solution of gravitational wave equation, Kerr - Schild      82
Solution of gravitational wave equation, Kompaneets      108
Solution of gravitational wave equation, Schwarzschild      7 139
Solution of gravitational wave equation, Takeno      121
sources      see Systems of sources
Space(s), Einstein's      35 47 40 60 61 62 63 65 66 75 93 94 125 127
Space(s), Einstein's, types of      37
Space(s), empty      39 109 111
Space(s), empty, algebraically special      107
Space(s), empty, Cauchy problem in      23 24 32
Space(s), empty, equations in      18 24
Space(s), empty, equations in, Einstein's      24 26 45 81 119 120
Space(s), empty, plane gravitational waves in      85
Space(s), empty, tensor in      39
Space(s), flat      127
Space(s), flat, conformally      39
Space(s), Riemann      39
Space-time, background      2 12 13 15
Space-time, curvature      34
Space-time, curved      12 13 15 114
Space-time, empty      37 40 47 49 54 64 66 70 76 77 85 88 90 107
Space-time, empty, Kerr - Schild solution in      82
Space-time, empty, with Riemannian tensor      74 76 77
Space-time, flat      2 9 12 15 38 49 97 104 120
Space-time, metric      xvii 12 127
Space-time, metric, flat      7 72
Space-time, Minkowski      84 85 114
Space-time, nonempty      11 77 81 85 86 95 96 113
Space-time, nonflat      2 15
Space-time, Riemannian      34 62 78
Space-time, Riemannian, asymptotically flat      98 107 108 111
Spatial covariance      116
Stachel, J.      108 113
STANYUKOVICH,K.P.      xix 135
Star(s), binary      12 138 139 144 148
Star(s), binary neutron      139
Star(s), collapsed      12 138 139
Star(s), Crab Nebula      142
Star(s), neutron      12 138 139 140
Star(s), pulsars      12 138 142 143 144
Star(s), pulsating      139 140
Star(s), quasars      12 138 141 148 149
Star(s), supernovae      143
STARUSZKIEWICZ, A.      xvii
Sun      141 142
Superemissive state of matter      149
Supernovae      143
Surface, characteristic      27
Surface, of transitivity      96
SYNGE,J.      xviii xix 100 122 137
Systems of sources, axially symmetric      103 104
Systems of sources, dipole moments      100 104
Systems of sources, gravitational emergence from      102
Systems of sources, harmonic coordinated      16 19 21
Systems of sources, isolated,      xviii 10 12 16 105 106
Systems of sources, isolated, axially symmetric      10 11 16 97 101 112
Systems of sources, monopole moments      100 104
Systems of sources, multipole moments      100 104
Systems of sources, quadrupole      101 104
Szekeres, P.      xviii xix 80 111
Takeno metric      92 121
Takeno solution      121
Takeno, H.      xviii 45 67 86 92 95 120
TAMBURINO, L.A.      xviii
TAUB.A.      80
Taylor converging series      7
Tensor(s), "curvature 2-form"      74
Tensor(s), axial      27
Tensor(s), barred      14
Tensor(s), Bel's (superenergy)      47 48 71
Tensor(s), bilinear (degenerate form)      55
Tensor(s), conformal (curvature)      38 60
Tensor(s), conformal (curvature), Weyl's      38 60
Tensor(s), curvature      23 24 32 36 38 44 52 53 57 62 63 65 70 127 137 151
Tensor(s), curvature, conformal      38 60
Tensor(s), curvature, hyperbolic      64
Tensor(s), curvature, in an empty space      52 59
Tensor(s), curvature, invariants      52
Tensor(s), curvature, spatial      117
Tensor(s), curvature, Weyl's conformal      38 60
Tensor(s), Debever's      71
Tensor(s), Debever's, in empty-space      71
Tensor(s), Debever's, superenergy      71
Tensor(s), degenerate double form (Riemann)      56 57
Tensor(s), degenerate form (bilinear)      55
Tensor(s), discriminant      27
Tensor(s), Einstein (energy-momentum)      57
Tensor(s), electromagnetic field      34 74 131
Tensor(s), energy      47
Tensor(s), energy-momentum      1 6 27 29 42 44 47 48 50 67 87 95 126 130 133
Tensor(s), energy-momentum, Einstein's      57
Tensor(s), energy-momentum, of an ideal fluid      130
Tensor(s), energy-momentum, of dissipative systems      130
Tensor(s), energy-momentum, of the electromagnetic field      131
Tensor(s), field (electromagnetic)      34 74
Tensor(s), in empty space      39 52 59 71 102 111
Tensor(s), Matte      77
Tensor(s), Matte, symmetrical      75
Tensor(s), Maxwell's (stress)      27 43 53 55 56 61 81
Tensor(s), metric      140
Tensor(s), metric, spatial, chronometrically invariant      116
Tensor(s), multipole moment      4
Tensor(s), of absolute rotation      116
Tensor(s), of deformation velocities      117 121
Tensor(s), Ricci's      1 2 13 58 61 62 67 95
Tensor(s), Riemann - Christoffel      2
Tensor(s), Riemann's      13 25 29 33 34 36 37 38 40 42 44 47 53 54 56 58 61 62 63 65 74 75 90 91 96 101 104 105 107 108 111 112 113 117 118 120 125 133 135 136 137 142 145 151
Tensor(s), Riemann's, algebraic structure (general)      110
Tensor(s), Riemann's, degenerate double form of      56 57
Tensor(s), Riemann's, empty space- time with      74
Tensor(s), Riemann's, forming coefficient of singular double form      58
Tensor(s), Riemann's, in empty space      39 102 111
Tensor(s), Riemann's, peeling of      109
Tensor(s), Riemann's, principal vectors of      44
Tensor(s), Riemann's, tetrad components of      101 102 105 110
Tensor(s), Riemann's, world tensor      119 126
Tensor(s), spatial (metric)      116
Tensor(s), stress      126 129
Tensor(s), stress, Maxwell's      27 43 53 55 56 61 81
Tensor(s), superenergy      47 ff 70
Tensor(s), superenergy, Bel's      47 48 71
Tensor(s), superenergy, Debever's      71
Tensor(s), symmetrical (Matte's)      75
Tensor(s), three-dimensional      117
Tensor(s), Weyl's      38 39 40 59 60 77 102 107 111
Tensor(s), Weyl's , conformal curvature      38 60
Tensor(s), world (Riemann's)      119 126
Test particles      136 146
Theorem, Avez's      87
Theorem, Chevreton's      84 85
Theorem, Debever's      39 70
Theorem, Goldberg - Sachs      108
Theorem, Leray's      24 25
Theorem, Misra and Singh's      76
Theorem, peeling      107
Theorem, Petrov's fundamental      36
Theory, Einstein's general (of relativity)      xvii xix 1 18 27 31 32 34 150
Theory, Einstein's special (of gravitation)      xvii xix 60 101 140
Theory, of gravitation, linearized      16
Theory, of perturbations      147
Thompson, A.      xix
Thorne, K.S.      xx 12 138 139 140 142
Tolman, R.C.      33 34 62 74
Tonnelat, M.A.      xix
TORRENCE, R.J.      xviii xix 103
Trajectories, of light rays      96 97
Trajectories, of propagation      78 81 85 90 96 113 146
Trajectories, of the Killing vector field      106
Trajectories, of vector      110
Transformations, admissible coordinate      93 95
Transformations, chronometric invariance under      116
Transformations, of the Lie group, infinitesimal      15
Transformations, spatial covariance with respect to      116
Trautman, A.      xvii xviii xx 22 29 45 79 80 81 84 105
TREDER, H.      viii xix
TROLLOPE, R.      xix 45 46
UNT, V.      xix
Unti, T.      xviii
Vaidya, P.      xviii xix 92
VAN DER BURG, M.      xviii 11 101 112
VAVILOV, B.T.      xix
Vector(s), Debever      40 41 53 54 107 110 111
Vector(s), Debever, field      79 110
Vector(s), Debever, Petrov-type      40
Vector(s), field      39 54 79
Vector(s), gravitational-inertial force      116 121 122
Vector(s), isotropic      58 107
Vector(s), isotropic, field      39 54 79
Vector(s), isotropic, field, parallel      90
Vector(s), Killing      46 106 107
Vector(s), Killing, electromagnetic      50
Vector(s), Killing, field      106 107
Vector(s), potentials of the gravitational-inertial field      116
Vector(s), Poynting      43 50
Vector(s), Riemann      44
Vector(s), Riemann tensor, principal of the      44
viscosity      130
Viscosity, first      129
Viscosity, second      129
VISHNEVSKII, V.V.      53
Vishveshwara, C.V.      xix 103
VODYANITSKII, A .A.      xx 147
Wave(s), analogy with electromagnetic waves      42 47 55
Wave(s), cylindrical      108 120 123
Wave(s), cylindrical, Einstein - Rosen      147
Wave(s), cylindrical, interacting      123
Wave(s), electromagnetic      see Electromagnetic waves
Wave(s), equations      see Equations wave
Wave(s), front      55 57 78 108 146
Wave(s), front, axially symmetric      104
Wave(s), front, condition of existence of      84
Wave(s), front, electromagnetic      68 96
Wave(s), front, gravitational      29 42 61 78 85 96
Wave(s), functions      127
Wave(s), gravitational      see Gravitational waves
Wave(s), gravitational-inertial      see Gravitational-inertial waves
Wave(s), of acceleration      135
Wave(s), of curvature      135
Wave(s), of deformation      135
Wave(s), of rotation      135
Wave(s), operator, d'Alembert      119
Wave(s), operator, generalized      62
Wave(s), plane      xviii
Wave(s), plane, Bondi      147
Wave(s), plane, solutions      84
Wave(s), solutions      95 (see also Solution of gravitational wave equation)
Wave(s), solutions, approximate      xix
Wave(s), solutions, nonanalytical      20
Wave(s), solutions, of linearized theory      16
Wave(s), spherical      xviii
Wave(s), zone      16
Wavelike gravitational fields, distinguishing criteria      34
Weber's experiments      xvii
Weber, J.      xviii xix xx 12 62 108 135 138 142 143 144 146 150
Weinberg, S.      xx
Weyl mass      105
Weyl type of wave- zone term      106
Weyl's metric      100
Weyl's metric, axially symmetric      109
Weyl's tensor      38 39 40 59 60 77 102 107 111
Weyl's tensor, conformal curvature      38 60
Weyl.H.      38
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте