|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Laywine C.F., Mullen G.L. — Discrete Mathematics Using Latin Squares |
|
|
Предметный указатель |
Plane(s) affine and projective 131—152
Plane(s) desarguesian 172
Plane(s) Euclidean 131 135 136 143
Plane(s) Hall 146 147 151 172
Polynomials, irreducible 272 273 277 278 280
Prime power conjecture 38 152
Prime power conjecture, Holder's partial resolution of for hypercubes 61 62
Primes, Fermat 291
Primes, Mersenoe 291
Primitive element 274 277 291
Principle of indusion-exdusion 75—93
Principle of indusion-exdusion, defined 75 76
Projective planes and duality principle 150
Projective planes, axioms defining 138 139
Projective planes, desarguesian 143—146 151
Projective planes, Fano 150
Projective planes, Hall 146 147 151
Projective planes, Hughes 151
Projective planes, incidence matrix 149 150
Projective planes, nondesarguesian 146—150
Projective planes, order of 139
Projective planes, points at infinity 139 140
Quadrangle criterion 97 104
Quasi — Monte Carlo methods 253
Quasi-groups 97
Ring, commutative 270
Rook polynomials 80—86 92 285
Rook polynomials, defined 80 81
Room squares 182—187 238 262
Room squares and duplicate bridge tournaments 182 183 186
| Room squares, defined 182
Room squares, Howell master sheets 182
Row effects 190
Row-latin squaie(s) 97—100
Row-latin squaie(s) latin power set 99
Row-latin squaie(s) orthogonal 98 99
Row-latin squaie(s) power set 99
Simpson rule 241
Singleton bound 212 221
Sphere-packing (Hamming) bound 211 224
Symmetric designs 155
Three-orthogonality 229 243 251
Transversal design(s) 27—32 37
Trapezoidal rule 241
Two-way analysis of variance 189
Unifonn pseudorandom numbers 242
Vector spaces 274—278
Vector spaces and error-corrrecting codes 276 277
Vector spaces, addition of vectors 274
Vector spaces, examples of 27 276
Vector spaces, finite-dimensional 276
Vector spaces, finite-dimensional, dimension of 276
Vector spaces, scalar multiplication 274
Vector spaces, sets of vectors 276
Vector spaces, sets of vectors, linear combination 276
Vector spaces, sets of vectors, linearly dependent 276 277
Vector spaces, sets of vectors, linearly independent 276 277
Vector spaces, sets of vectors, spanning 276
Vector spaces, subspaces 276—277
Wilson’s problem 39
|
|
|
Реклама |
|
|
|