Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Johnson W.C. — Mathematical and physical principles of engineering analysis
Johnson W.C. — Mathematical and physical principles of engineering analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mathematical and physical principles of engineering analysis

Àâòîð: Johnson W.C.

Àííîòàöèÿ:

This book is the outgrowth of a course in engineering analysis which the author has developed over the past six years for students in the several branches of engineering at Princeton University. The purpose of the book is to present the essential physical and mathematical principles and methods of approach that underlie the analysis of many practical engineering problems. The point of view is primarily utilitarian in an engineering sense but is aimed at a sound understanding of basic principles and designed to form a firm foundation for more advanced work. The book emphasizes basic physical principles and physical reasoning, and devotes considerable attention to methods of attack, the use of assumptions, procedures in setting up equations, the use of mathematics as a tool in accurate and quantitative reasoning, and the physical interpretation of mathematical results. Graphical methods are used freely, and reasonable approximations arc encouraged provided that they lead to results within the required accuracy. Every effort is made to present the material from a broad and unspecialized point of view and to use material with which every graduate engineer should be familiar, whatever his field.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1944

Êîëè÷åñòâî ñòðàíèö: 355

Äîáàâëåíà â êàòàëîã: 20.12.2012

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Force as dependent variable      69 136
Force between coils      32
Force by virtual displacement      31—34
Force of spring      11—12 57
Force, analogy to voltage      26 67
Force, damping      56—57
Force, inertia      15—16 57
Force, nonsinusoidal      239
Force, on airplane wing      230—234
Force, sinusoidal      124 182
Force, units of      15
Forced oscillation      124 182
Forced oscillation of mass on spring      196—201
Forced oscillation, combined with free oscillation      122 124—127
Forced oscillation, nonsinusoidal      251—254 266—268
Formula, Euler's      102
Formula, recursion      172 174
Fourier coefficients      241 242—249
Fourier coefficients for even and odd functions      245—247
Fourier coefficients, complex      256
Fourier integral      266—275
Fourier series      239—275
Fourier series for even and odd functions      245
Fourier series in terms of time or distance      247
Fourier series, applied to boundary conditions      296 304
Fourier series, complex form of      254—258
Fourier series, convergence of      249—251
Fourier series, differentiation of      250
Fourier series, estimation of harmonics      264
Fourier series, expansion by, in interval      249
Fourier series, integration of      250
Fourier series, numerical harmonic analysis      258
Fourier transform      269
Free oscillations      100—103
Free oscillations of elastic string      292—297
Free oscillations of mass on spring      106 121
Free oscillations, combined with forced oscillation      122 124—127
Free-body method      61—63
Freedom, degrees of      46—47
Frequency, natural      102
Frequency, natural, of elastic string      295
Frequency, resonant      197
Frequency-doubling circuit      278
Frictional forces      56
Functions of several variables      282—285
Functions, Ber and Bei      176
Functions, Bessel's      168—179
Functions, complementary      118
Functions, Conjugate      321
Functions, error      164
Functions, even      245
Functions, flux      318
Functions, gamma      174—175
Functions, harmonic      307
Functions, hyperbolic      145—149
Functions, odd      246
Functions, periodic      239
Functions, potential      321
Functions, propagation      317
Functions, pulse      270
Functions, step      273
Fundamental dimensions      207 211
Fundamental mode      295
Fundamental wave      241
Gamma functions      174—175
General solution, defined      96
Gibbs phenomenon      250
Gradient, from field plot      327 329
Graeffe's root-squaring method      109n
Graphical field plotting      317—331
Graphical integration      80—82
Graphical solution of differential equations      86—89
Gravity forces, in equations      58
Gravity, acceleration of      15
Gyration, radius of      17
Harmonic analysis      258—263
Harmonic analysis by estimation      264—266
Harmonic function      307
Harmonics      241 295
Harmonics, continuous spectrum of      269
Harmonics, effect of even      244
Harmonics, estimation of      264—266
Heat flow by field plotting      317—328
Heat flow, analogy to cable      313
Heat flow, conduction equation      301
Heat flow, in cylinder      176—179
Heat flow, in quenched slab      300—305
Heat flow, steady      307 309—311
Heat flow, storage equation      301
Heat flow, variable      300—308
Heat transfer, dimensional analysis of      226—229
Homogeneity, dimensional      207
homogeneous differential equations      96—117 157 167
Homogeneous differential equations, partial      297—300
Hyperbolic functions      145—149
Hyperbolic functions of complex argument      148
Hysteresis      30
Imaginary number      101 183
Imaginary number as exponent      102 145 184
impact      20
Impact, coefficient of restitution for      34
Impact, dissipation of energy in      11
Impedance, characteristic      316
Impedance, driving point      191
Impedance, electrical      191
Impedance, electrical, of RC series circuit      194
Impedance, mechanical      192
Impedance, mechanical, of mass on spring      196
Impedance, transfer      191
Induced current      29
Induced voltage      23—26 51 55
Inductance by field plotting      330
Inductance, coefficients of      24—25
Inductance, effect of, in switching      26—29
Inductance, energy stored in      12 30—31
Inductance, mutual      25 51 55
Inductance, nonlinear      29 30 229
Inductance, variable      162—164
Inertia force      15 16 57
Inertia torque      17 58
Inertia, moment of      17
Initial conditions by superposition      141—145
Initial conditions for mass on spring      105 123
Initial conditions for systems of equations      113—114 132
Initial conditions, applied after change of variable      135—136
Initial conditions, effect of      43
Initial conditions, for RL circuit      99
Initial conditions, operator method      137—141
Initial conditions, relaxed      137
Initial derivatives, method of      113—114 132
Initial derivatives, operator method      137—141
Integral operator      138
Integral, definite      76
Integral, Fourier      266—275
Integral, graphical evaluation of      80—82
Integral, numerical evaluation of      76—79
Integral, particular      117 162
Integrating factor      128 161
Integration, graphical      80—82
Integration, numerical      76—79
Integration, of Fourier series      250
Integration, step-by-step      82—84
Isoclines, method of      86—89
Isolation, of vibration      204
kinetic energy      11
Kinetic energy of rotation      21
Kirchhoff's laws      23
Kirchhoff's laws in setting up equations      50—53
Laplace's equation      307 309 321
Laplace's equation, field-map solution      317—331
Law of conservation of energy      11—13
Law, Kirchhoff's      23 50
Law, Newton's      14—15
Law, of action and reaction      13
Limiting-case checking      214
Linear damping      56
Linear differential equations with variable coefficients      161 167—179
Linear differential equations, partial      280—331 see
Linear differential equations, with constant coefficients      97—149 see
Linear inductance      24
Linear inductance, energy stored in      12 31
Linear inductance, flux linkages in      24
Linear inductance, varying with time      162
Linear inductance, voltage induced in      25—26 51
Linear spring      12
Lines, transmission      311—317
Linkages, flux      23
Loop method      50 67
Loops and nodes      293
Mach's number      234
Magnetic field, energy in      12 30—31
Magnetic field, field plotting of      317—331
Mapping, conformal      328
Mapping, field      317—331
Mass      15
Mass, inertia force of      15 16 57
Mass, kinetic energy of      11
Mean-value theorem      286
Mechanical energy      11—12
Mechanical filter      74
Mechanical systems with distributed constants      280—300
Mechanical systems, analogies to      67—70
Mechanical systems, choice of coordinates for      45
Mechanical systems, damping in      56—57
Mechanical systems, forced oscillations in      124 196
Mechanical systems, forced oscillations in, combined with free oscillations      122 124—127
Mechanical systems, forced oscillations in, nonsinusoidal      251—254 266
Mechanical systems, forces in      57
Mechanical systems, free oscillations in      100—108 121—123
Mechanical systems, free oscillations in, with distributed constants      292—297
Mechanical systems, impedance of      192 196
Mechanical systems, nonlinear, methods for      75—89 155 218
Mechanical systems, resonance in      196—201 295
Mechanical systems, setting up equations for      56—63
Mechanical systems, torques in      57—58
Membrane, equation for      181
Mesh currents      47
Models, use of      230—234
Modes of oscillation      294
Modified Bessel functions      175
Moment of inertia      17 58
Momentum, analogy to flux linkage      28
Momentum, angular      21
Momentum, conservation of      19—22
Momentum, electrical      27
Motion, critically damped      103 108
Motion, Newton's laws of      14—15
Motion, nonsinusoidal      239 251—254 266
Motion, oscillatory      101 106 122
Motion, oscillatory, of elastic string      292—296
Motion, rectilinear      16
Motion, rotational      16—18
Motion, sinusoidal      124 186—201
Mutual inductance      25 51 55
Natural frequency      102
Natural frequency of vibrating string      295 333
Natural frequency, relation of, to resonance      200
Network      see "Electrical systems"
Newton's laws of motion      14—15
Node method      66—67
Nodes, and antinodes      293
Nonhomogeneous differential equations      96 117—134
Nonlinear damping      56 77 156
Nonlinear inductance      24
Nonlinear inductance, energy stored in      30
Nonlinear inductance, flux linkages in      29
Nonlinear spring      11
Nonlinear systems, analytical methods      155—161 164—166
Nonlinear systems, dimensional analysis      229—230
Nonlinear systems, isocline method      86—89
Nonlinear systems, numerical methods      75—86
Nonperiodic function, expanded in interval      249
Nonperiodic function, Fourier-integral analysis of      266—275
Nonsinusoidal waves      239—275
Normal form      84
Numbers, complex      182—186
numbers, imaginary      183
Numbers, Mach's      234
Numbers, Reynolds      227 232
Numerical harmonic analysis      258
Numerical integration      76—79
Numerical solution, of differential equations      82—860
Odd function      246
One-dimensional heat flow      300—305
Operator in systems of equations      112 131
Operator method, for initial derivatives      137—145
Operator, differential      54 111
Operator, differential, partial      298
Order of differential equation      44 95
Ordinary differential equations      95—179 see
Oscillation      100—103
Oscillation of pendulum      87
Oscillation, characteristic modes of      294
Oscillation, damped      102 106 122
Oscillation, forced      124 182
Oscillation, forced, combined with free oscillation      122 124—127
Oscillation, forced, nonsinusoidal      251—254 266
Oscillation, forced, of mass on spring      196—201
Oscillation, free      100—103
Oscillation, free, of elastic string      292—297
Oscillation, free, of mass on spring      106 122
Oscillation, natural frequency of      102
Oscillation, self-excited      93
Oscillation, steady state      124 182
Oscillation, undamped      103 108 201
Overdamped      103 106
overtones      295
Partial derivatives      282—285
Partial differential equations      280—331
Partial differential equations for vibration of rod      333
Partial differential equations of steady heat flow      305—311
Partial differential equations of transmission line      311—317
Partial differential equations of variable heat flow      300—308
Partial differential equations of variable heat flow in polar coordinates      308
Partial differential equations of vibrating string      285—297
Partial differential equations, applied to quenched slab      300—305
Partial differential equations, boundary conditions for      291 310
Partial differential equations, boundary conditions for, by Fourier series      296 304
Partial differential equations, defined      95—96
Partial differential equations, homogeneous      297—300
Partial differential equations, Laplace's      307 309 321
Partial differential equations, Laplace's, field-map solution      317—331
Partial differential equations, product solution of      289—292
Particular integral      117
Particular solution      96
Pendulum, oscillation of      87
Periodic function      239
Periodic function, nonsinusoidal      239—268
Periodic function, sinusoidal      182—201
Phase angle      102 191
Phase shift, at resonance      199
Phase spectrum      274
phase velocity      293 295 314
Pi theorem      219
Plotting of fields      317—331
Polar coordinates      307—309
Positive directions      48—50
Potential function      321
Primary quantities      220
Principle, D'Alembert's      18 56
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå