|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Johnson W.C. — Mathematical and physical principles of engineering analysis |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Force as dependent variable 69 136
Force between coils 32
Force by virtual displacement 31—34
Force of spring 11—12 57
Force, analogy to voltage 26 67
Force, damping 56—57
Force, inertia 15—16 57
Force, nonsinusoidal 239
Force, on airplane wing 230—234
Force, sinusoidal 124 182
Force, units of 15
Forced oscillation 124 182
Forced oscillation of mass on spring 196—201
Forced oscillation, combined with free oscillation 122 124—127
Forced oscillation, nonsinusoidal 251—254 266—268
Formula, Euler's 102
Formula, recursion 172 174
Fourier coefficients 241 242—249
Fourier coefficients for even and odd functions 245—247
Fourier coefficients, complex 256
Fourier integral 266—275
Fourier series 239—275
Fourier series for even and odd functions 245
Fourier series in terms of time or distance 247
Fourier series, applied to boundary conditions 296 304
Fourier series, complex form of 254—258
Fourier series, convergence of 249—251
Fourier series, differentiation of 250
Fourier series, estimation of harmonics 264
Fourier series, expansion by, in interval 249
Fourier series, integration of 250
Fourier series, numerical harmonic analysis 258
Fourier transform 269
Free oscillations 100—103
Free oscillations of elastic string 292—297
Free oscillations of mass on spring 106 121
Free oscillations, combined with forced oscillation 122 124—127
Free-body method 61—63
Freedom, degrees of 46—47
Frequency, natural 102
Frequency, natural, of elastic string 295
Frequency, resonant 197
Frequency-doubling circuit 278
Frictional forces 56
Functions of several variables 282—285
Functions, Ber and Bei 176
Functions, Bessel's 168—179
Functions, complementary 118
Functions, Conjugate 321
Functions, error 164
Functions, even 245
Functions, flux 318
Functions, gamma 174—175
Functions, harmonic 307
Functions, hyperbolic 145—149
Functions, odd 246
Functions, periodic 239
Functions, potential 321
Functions, propagation 317
Functions, pulse 270
Functions, step 273
Fundamental dimensions 207 211
Fundamental mode 295
Fundamental wave 241
Gamma functions 174—175
General solution, defined 96
Gibbs phenomenon 250
Gradient, from field plot 327 329
Graeffe's root-squaring method 109n
Graphical field plotting 317—331
Graphical integration 80—82
Graphical solution of differential equations 86—89
Gravity forces, in equations 58
Gravity, acceleration of 15
Gyration, radius of 17
Harmonic analysis 258—263
Harmonic analysis by estimation 264—266
Harmonic function 307
Harmonics 241 295
Harmonics, continuous spectrum of 269
Harmonics, effect of even 244
Harmonics, estimation of 264—266
Heat flow by field plotting 317—328
Heat flow, analogy to cable 313
Heat flow, conduction equation 301
Heat flow, in cylinder 176—179
Heat flow, in quenched slab 300—305
Heat flow, steady 307 309—311
Heat flow, storage equation 301
Heat flow, variable 300—308
Heat transfer, dimensional analysis of 226—229
Homogeneity, dimensional 207
homogeneous differential equations 96—117 157 167
Homogeneous differential equations, partial 297—300
Hyperbolic functions 145—149
Hyperbolic functions of complex argument 148
Hysteresis 30
Imaginary number 101 183
Imaginary number as exponent 102 145 184
impact 20
Impact, coefficient of restitution for 34
Impact, dissipation of energy in 11
Impedance, characteristic 316
Impedance, driving point 191
Impedance, electrical 191
Impedance, electrical, of RC series circuit 194
Impedance, mechanical 192
Impedance, mechanical, of mass on spring 196
Impedance, transfer 191
Induced current 29
Induced voltage 23—26 51 55
Inductance by field plotting 330
Inductance, coefficients of 24—25
Inductance, effect of, in switching 26—29
Inductance, energy stored in 12 30—31
Inductance, mutual 25 51 55
Inductance, nonlinear 29 30 229
Inductance, variable 162—164
Inertia force 15 16 57
Inertia torque 17 58
Inertia, moment of 17
Initial conditions by superposition 141—145
Initial conditions for mass on spring 105 123
Initial conditions for systems of equations 113—114 132
Initial conditions, applied after change of variable 135—136
Initial conditions, effect of 43
Initial conditions, for RL circuit 99
Initial conditions, operator method 137—141
Initial conditions, relaxed 137
Initial derivatives, method of 113—114 132
Initial derivatives, operator method 137—141
Integral operator 138
Integral, definite 76
Integral, Fourier 266—275
Integral, graphical evaluation of 80—82
Integral, numerical evaluation of 76—79
Integral, particular 117 162
Integrating factor 128 161
Integration, graphical 80—82
Integration, numerical 76—79
Integration, of Fourier series 250
Integration, step-by-step 82—84
Isoclines, method of 86—89
Isolation, of vibration 204
kinetic energy 11
Kinetic energy of rotation 21
Kirchhoff's laws 23
Kirchhoff's laws in setting up equations 50—53
Laplace's equation 307 309 321
Laplace's equation, field-map solution 317—331
| Law of conservation of energy 11—13
Law, Kirchhoff's 23 50
Law, Newton's 14—15
Law, of action and reaction 13
Limiting-case checking 214
Linear damping 56
Linear differential equations with variable coefficients 161 167—179
Linear differential equations, partial 280—331 see
Linear differential equations, with constant coefficients 97—149 see
Linear inductance 24
Linear inductance, energy stored in 12 31
Linear inductance, flux linkages in 24
Linear inductance, varying with time 162
Linear inductance, voltage induced in 25—26 51
Linear spring 12
Lines, transmission 311—317
Linkages, flux 23
Loop method 50 67
Loops and nodes 293
Mach's number 234
Magnetic field, energy in 12 30—31
Magnetic field, field plotting of 317—331
Mapping, conformal 328
Mapping, field 317—331
Mass 15
Mass, inertia force of 15 16 57
Mass, kinetic energy of 11
Mean-value theorem 286
Mechanical energy 11—12
Mechanical filter 74
Mechanical systems with distributed constants 280—300
Mechanical systems, analogies to 67—70
Mechanical systems, choice of coordinates for 45
Mechanical systems, damping in 56—57
Mechanical systems, forced oscillations in 124 196
Mechanical systems, forced oscillations in, combined with free oscillations 122 124—127
Mechanical systems, forced oscillations in, nonsinusoidal 251—254 266
Mechanical systems, forces in 57
Mechanical systems, free oscillations in 100—108 121—123
Mechanical systems, free oscillations in, with distributed constants 292—297
Mechanical systems, impedance of 192 196
Mechanical systems, nonlinear, methods for 75—89 155 218
Mechanical systems, resonance in 196—201 295
Mechanical systems, setting up equations for 56—63
Mechanical systems, torques in 57—58
Membrane, equation for 181
Mesh currents 47
Models, use of 230—234
Modes of oscillation 294
Modified Bessel functions 175
Moment of inertia 17 58
Momentum, analogy to flux linkage 28
Momentum, angular 21
Momentum, conservation of 19—22
Momentum, electrical 27
Motion, critically damped 103 108
Motion, Newton's laws of 14—15
Motion, nonsinusoidal 239 251—254 266
Motion, oscillatory 101 106 122
Motion, oscillatory, of elastic string 292—296
Motion, rectilinear 16
Motion, rotational 16—18
Motion, sinusoidal 124 186—201
Mutual inductance 25 51 55
Natural frequency 102
Natural frequency of vibrating string 295 333
Natural frequency, relation of, to resonance 200
Network see "Electrical systems"
Newton's laws of motion 14—15
Node method 66—67
Nodes, and antinodes 293
Nonhomogeneous differential equations 96 117—134
Nonlinear damping 56 77 156
Nonlinear inductance 24
Nonlinear inductance, energy stored in 30
Nonlinear inductance, flux linkages in 29
Nonlinear spring 11
Nonlinear systems, analytical methods 155—161 164—166
Nonlinear systems, dimensional analysis 229—230
Nonlinear systems, isocline method 86—89
Nonlinear systems, numerical methods 75—86
Nonperiodic function, expanded in interval 249
Nonperiodic function, Fourier-integral analysis of 266—275
Nonsinusoidal waves 239—275
Normal form 84
Numbers, complex 182—186
numbers, imaginary 183
Numbers, Mach's 234
Numbers, Reynolds 227 232
Numerical harmonic analysis 258
Numerical integration 76—79
Numerical solution, of differential equations 82—860
Odd function 246
One-dimensional heat flow 300—305
Operator in systems of equations 112 131
Operator method, for initial derivatives 137—145
Operator, differential 54 111
Operator, differential, partial 298
Order of differential equation 44 95
Ordinary differential equations 95—179 see
Oscillation 100—103
Oscillation of pendulum 87
Oscillation, characteristic modes of 294
Oscillation, damped 102 106 122
Oscillation, forced 124 182
Oscillation, forced, combined with free oscillation 122 124—127
Oscillation, forced, nonsinusoidal 251—254 266
Oscillation, forced, of mass on spring 196—201
Oscillation, free 100—103
Oscillation, free, of elastic string 292—297
Oscillation, free, of mass on spring 106 122
Oscillation, natural frequency of 102
Oscillation, self-excited 93
Oscillation, steady state 124 182
Oscillation, undamped 103 108 201
Overdamped 103 106
overtones 295
Partial derivatives 282—285
Partial differential equations 280—331
Partial differential equations for vibration of rod 333
Partial differential equations of steady heat flow 305—311
Partial differential equations of transmission line 311—317
Partial differential equations of variable heat flow 300—308
Partial differential equations of variable heat flow in polar coordinates 308
Partial differential equations of vibrating string 285—297
Partial differential equations, applied to quenched slab 300—305
Partial differential equations, boundary conditions for 291 310
Partial differential equations, boundary conditions for, by Fourier series 296 304
Partial differential equations, defined 95—96
Partial differential equations, homogeneous 297—300
Partial differential equations, Laplace's 307 309 321
Partial differential equations, Laplace's, field-map solution 317—331
Partial differential equations, product solution of 289—292
Particular integral 117
Particular solution 96
Pendulum, oscillation of 87
Periodic function 239
Periodic function, nonsinusoidal 239—268
Periodic function, sinusoidal 182—201
Phase angle 102 191
Phase shift, at resonance 199
Phase spectrum 274
phase velocity 293 295 314
Pi theorem 219
Plotting of fields 317—331
Polar coordinates 307—309
Positive directions 48—50
Potential function 321
Primary quantities 220
Principle, D'Alembert's 18 56
|
|
|
Ðåêëàìà |
|
|
|