Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fike C.T. — Computer Evaluation of Mathematical Functions
Fike C.T. — Computer Evaluation of Mathematical Functions



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computer Evaluation of Mathematical Functions

Автор: Fike C.T.

Аннотация:

This book developed from lecture notes for a class that I have taught for several years at the IBM Systems Research Institute. This is an eight-week class on mathematical methods used in function evaluation routines for digital computers. So far as I know, this is the first textbook to contain all the main topics relevant to this subject. Indeed, much of the material was not available in books at all and could be found only in original papers and in the documentation of existing computer programs. As the reader can see, the topics included in the book make a varied and interesting assortment and would probably not be grouped together under any other heading.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1968

Количество страниц: 238

Добавлена в каталог: 20.12.2012

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Moler, C. B.      10 18
Monotonicity requirement      4
Moody, W. T.      90
Morrison, D. R.      22 35
Motzkin, T. S.      60
Moursund, D. G.      35
Murnaghan, F. D.      70 86 90 215
Near-minimax approximations, polynomial      65 76—78 81 89 92 108 115 127 130 132 136
Near-minimax approximations, rational      164—166 178 180 187 198
Nemeth, G.      109
Nested division      see Rational-function evaluation
Nested multiplication      see Polynomial evaluation
Newton — Raphson method      23 32 35 36
Newton’s method, cube-root evaluation      31—34 37 92 176
Newton’s method, square-root evaluation      22—31
Newton’s method, square-root evaluation, convergence      23
Newton’s method, square-root evaluation, number of iterations      23 24 28—31
Newton’s method, square-root evaluation, starting values (starting approximations)      23—28 34 35 75 76 80 86—88 91 93 167—169 173— 175 176 179
Nodes, minimax approximations with      see Minimax polynomial approximations and Minimax rational approximations
Noise level, of rounding errors      11
Notation, summary of      xii
Novodvorskii, E. P.      90
Objectives for function evaluation routines      see Requirements for function evaluation routines
Odd functions      72 73 85 96 103 123 134 143 145 162 163 192 194 197 199
Operation times for arithmetic operations on IBM System      360 146
Operations, arithmetic, number required to evaluate, notation for operation counts      51 142
Operations, arithmetic, number required to evaluate, polynomials      52—55 134
Operations, arithmetic, number required to evaluate, rational functions      142
Optimal approximations      see Minimax polynomial approximations and Minimax rational approximations
Orthogonal polynomials      97
Osborne, M. R.      172 176 214 215
Ostrowski, A.      60
Pad$\acute{e}$ approximations      180 181—185 195 196 199 201 203 204
Pad$\acute{e}$ table      183
Pan, V. Ya      60
Paszowski, S.      81 90
Performance standards      2—5 11
Perlin, I. E.      47 109 137
Perron, O.      183 190 193 195 202
Perturbation of argument      12—14 15 16
Picken, S. M.      108 136
Pinsker, I. S.      90
PL/I      see Programming languages
Polynomial evaluation      1 51—63
Polynomial evaluation, Chebyshev series form      53 134 135
Polynomial evaluation, comparison of methods      54 59 135
Polynomial evaluation, economical methods      53—60 142
Polynomial evaluation, economical methods, 4th-degree      55 56 61
Polynomial evaluation, economical methods, 5th-degree      56 57
Polynomial evaluation, economical methods, 6th-degree      57—59
Polynomial evaluation, economical methods, higher degrees      54 55 62
Polynomial evaluation, nested multiplication      51—53 135 142 161
Polynomial evaluation, operation counts for      52 54 135
Polynomial evaluation, rounding error in      52 53 55 59 60 135
Pomentale, T.      177
Powell, M. J. D.      127 132 137
Power series      8 11 109 115 117 118— 122 131 135 138—140 181 183 185 186 193 195 202 210
Precision, double      2 10 14 16 17 19—21 25 31 34 45 46 58 76 137 146
Precision, extended      22
Precision, single      2 10 14 16 19—21 25 60 65 146 167 183
Precision, triple      14 16
Precision, variable      3 18 46 122
Program libraries      see Libraries
Programming languages, Algol      1 4 136
Programming languages, assembly      4 25
Programming languages, Formac      63 114 134 139 153 205
Programming languages, FORTRAN      1 4 18 31 35 42 45 47 58 61 65 76 91 92 122 125 134 137 138 146 148 150 167 177 183 196 199 203 215
Programming languages, Jovial      62 122
Programming languages, PL/I      5 31
Quadratic convergence      see Convergence
Quasi-arithmetic, computer      8 9 14 16
Ralston, A.      2 18 155 163 165 167 172 173 176 177 179 199 202
Random numbers      16 17 20 21
Range reduction      see Reduction of argument range
Rational-function evaluation      141—153
Rational-function evaluation, continued fraction form      142—153 161 195
Rational-function evaluation, fractional form      141 142 147 151
Rational-function evaluation, nested division      143
Rational-function evaluation, operation counts for      142
Rational-function evaluation, rounding error in      149 150
Raymann, G.      91
Reduction of argument range      38—50 206
Reduction of argument range, propagation of rounding error in      45 46
Reduction of argument range, reasons for      38—40
Reduction of argument range, specific techniques      40—43
Reduction of argument range, specific techniques, arcsine      41
Reduction of argument range, specific techniques, arctangent      48—50
Reduction of argument range, specific techniques, exponential      41—45 48 79
Reduction of argument range, specific techniques, gamma      42
Reduction of argument range, specific techniques, hyperbolic sine      40
Reduction of argument range, specific techniques, logarithm      48
Reduction of argument range, specific techniques, sine      41 45 46 48
Reduction of argument range, specific techniques, tangent      48
Reduction of argument range, subdividing range for piecewise approximation      42 43
Reduction of argument range, to (-1, 1)      115 116 139 180 181
Reduction of argument range, to arbitrary small interval      43—45 50 79 92
Relative error      see Error
Remez, E. Ya      83 90
Remez’ method, for polynomial approximations      83—89 93 94 119 140
Remez’ method, for rational approximations      163 170 179 214
Requirements for function evaluation routines      2—7 11 14—16 79 166
Rice, J.      46 60 61 89 173 176 177
Rolle’s Theorem      74
Rounded arithmetic      2 9
Rounding error      8—12 (see also Error)
Rounding error, bounds for      16
Rounding error, control of      10 14 16 24 46
Rounding error, in function argument      11—16
Rounding error, in polynomial evaluation      52 53 59 60 135
Rounding error, in range reduction      45 46
Rounding error, in rational-function evaluation      149 150
Rounding error, instability and      12—16 19 20 46
Rounding error, propagation of      10 12—16 40 46 52 53 55 59 60 149 150
Rounding error, use of extra precision to control      10 14 16 17 46 60 86 150 173
Rounding error, use of fixed-point to control      10 60
Shifted Chebyshev polynomials      see Chebyshev polynomials and Chebyshev series
Significant digits      5 6
Single precision      see Precision
Singularities      40 43 103 131 136 137
Snyder, M. A.      97 102 105 108 109
Speed, program execution      3 31 45 51 141 145 146
Spielberg, K.      47 188 202
Square root      see Functions and Newton’s method
Stability      see Instability
Standard error functions      see Minimax polynomial approximations and Minimax rational approximations
Starting values (starting approximations, for square-root and cubic-root evaluation)      see Newton’s method
Stegun, I.      108 136 193 201 208 215
Sterbenz, P. H.      28 35
Stiefel, E. L.      90
Stoer, J.      173 176 177
Streamlined polynomial evaluation methods      see Polynomial evaluation methods
Swarztrauber, P. N.      35 81 90
Synthetic division      51 (see also Nested multiplication)
Szeg$\ddot{o}$, G.      96 109
Tables, use of large      44 47 50
Taylor series      see Power series
Teichroew, D.      143 150
Telescoping      123 196 198 202
Testing of function evaluation routines      16—18
Thacher, H. C.      46 89 109 173 176 177
Thieleker, E. A.      18
Timings for IBM System      360
Timings for IBM System, arithmetic operations      146
Todd, J.      61 90 96 100 109
Transformation of argument      see Reduction of argument range
Triple precision      see Precision
Truncated (unrounded) arithmetic      9
Truncation error      8—12
Unrounded arithmetic      see Truncated arithmetic
Variable precision      see Precision
Variable-accuracy routines      122 135 136
Veidinger, L.      84 91
Vionnet, M.      61 62 107 109 137
Viskovatov’s method      193 194 196 203 205
Wall, H. S.      183 190 193 195 202
Watson, G. N.      208 215
Werner, H.      53 61 68 86 91
Wheeler, D. J.      2 35
Whittaker, E. T.      208 215
Wilkes, M. V.      2 35
Wilkinson, J. H.      10 18
Wimp, J.      109
Witzgall, C.      46 60 89 177
Wood, V. E.      137
Woodger, M.      46 136
Wrench, J. W.      70 86 90 215
Wynn, P.      202
Yanpol’skii, A. R.      35 47 60 90 109 137
Zeros, approximating a function near      70—72 74 93 116—118 121 156 160 181 188 200
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте