Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Baxter M., Rennie A. — Financial calculus
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Financial calculus
Àâòîðû: Baxter M., Rennie A.
Àííîòàöèÿ: The rewards and dangers of speculating in the modern financial markets have been to the fore in recent times with the collapse of banks and bankruptcies of public corporations as a direct result of ill-judged investments.
At the same time, individuals are paid huge sums to use their mathematical skills to make well-judged investment decisions. Here now is the first rigorous and accessible account of the mathematics behind the pricing, construction and hedging of derivative securities.
Key concepts such as martingales, change of measure, and the Heath-Jarrow-Morton model are described with mathematical precision in a style tailored for market practitioners. Starting from discrete-time hedging on binary trees, continuous-time stock models (including the Black-Scholes) are developed.
Practicalities are stressed, including examples from stock, currency and interest rate markets, all accompanied by graphical illustrations with realistic data. A full glossary of probabilistic and financial terms is provided.
This unique, modern and up-to-date book will be an essential purchase for market practitioners, quantitative analysts, and derivatives traders, whether existing or trainees, in investment banks in the major financial centres throughout the world.
ßçûê:
Ðóáðèêà: Ýêîíîìèêà è ôèíàíñû /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 233
Äîáàâëåíà â êàòàëîã: 10.02.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Adapted processes 55 62
American options 93
Arbitrage 8 39 41
Arbitrage pricing 7—9
Arbitrage, arbitrage price 8 86 139
Arbitrage, arbitrage-free 197
Arbitrage-free complete models 196—200
Autoregressive process 156
Bachelier 45
Bank account process see “Cash bond”
Binomial representation theorem 28—41 77
Binomial, branch 11
Binomial, branch model 10—17
Binomial, distribution 42
Binomial, process 46
Binomial, tree 19
Binomial, tree model 17—28
Black — Derman — Toy model 157
Black — Karasinski model 157
Black — Scholes 83—98
Black — Scholes, currency model 100
Black — Scholes, formula 43 91 182
Black — Scholes, hedge 96
Black — Scholes, model 83 178
Black — Scholes,summary 90
Bond only strategy 12
Bond options 169
Bond prices 144
bonds 112—115
Bonds, with coupons 114 165
Brace — Gatarek — Musiela model 175
Branch 10
Branch, binomial branch process 11
Brown, Robert 46
Brownian motion 44—46 48 49 54
Brownian motion, as stock model 50
Brownian motion, exponential with drift 51
Brownian motion, two-dimensional 62
Brownian motion, with drift 50
Calculus, Ito 57—62
Calculus, Newtonian 52
Calculus, stochastic 51—57
Call option 9 43 90
Call option, American 93
Call option, European 90
Call option, foreign exchange 103
Call option, on bonds 169
Call option, on coupon bonds 115 170
Call option, on dividend paying stocks 109
Call option, on swaps see “Swaptions”
Call option, quanto 123
Cameron — Martin — Girsanov theorem 74 75
Cameron — Martin — Girsanov theorem, and market price of risk 120
Cameron — Martin — Girsanov theorem, converse 74 105 192
Cameron — Martin — Girsanov theorem, n-factor 159 186 187
Cameron — Martin — Girsanov theorem, use in foreign exchange 102
Cameron — Martin — Girsanov theorem, use in HJM models 138 145
Cameron — Martin — Girsanov theorem, use in stock models 83 84 179
Caplet 171 176
Caps 170
Cash bond 11 18 37 136 144
Cash bond, foreign currency 100
Central limit theorem 42 47 48
Change of measure 62—76 145 179 187
Claim 3 20 30
Coin-tossing game 4 5
Collector's guide to, exponential martingales 79
Collector's guide to, martingales 79
Commodity 3
Complete market 197
Completeness 196—200
Conditional expectation 32
Conditional marginal distribution 48 69
Construction strategies 79—83
Contingent claim 5 (see “Claim continuous compounding”)
Continuous processes 44—51
Correlation 123 126 158 176 182 193
Coupon bonds 114 165
Coupon bonds, options on 115 170
Coupons, fixed rate 165
Coupons, floating rate 166
Covariance 124 158
Cox — Ingersoll — Ross model 156
Cross-currency contracts see “Quantos”
Cumulative normal integral see “Normal distribution function”
Currency see “Foreign exchange”
Default free 129
Delta hedge 181
density 7
Derivative 3 12
Derivative pricing 181 188
Difference equation 40 80
Diffusion 61 150
Digital contract 27 123
Discount bond 112 129
Discount process 37 87
Discounted, bond 138 145
Discounted, claim 38 87 90
Discounted, expectation 20 28
Discounted, stock 38 87 90 179
Discrete model, conclusions 41
Discrete model, continuous overture 41—43
Distribution function, normal 43 91
Dividends 106—112
Dividends, continuous 107
Dividends, periodic 111
Doleans exponential 61
Dollar investor 101
Doob — Meyer decomposition 56
Double fork 20
Drift 52 55 83
Drift, HJM 143 158
Drift, HJM constraints on 141 148
Drift, uniqueness 56
Driftlessness 78
Equilibrium distribution 154
Equities 106—112
Equities, guaranteed profits example 110
Equivalent martingale measure 197—200 (see “Martingale measure”)
Equivalent measures 66 74
European call option 90
Examples, pricing on tree 23
Exercise date 91
Exercise price see “Strike price”
Existence of martingale measure 40
Exotic contracts 128 163
Expectation 4 9 23
Expectation, discounted claim 40
Expectation, for a branch 12
Expectation, on a tree 21
Expectation, operator 31
Expectation, pricing 3—7 16 86
Expectation, re-emergence 23
Expectation, regained 16
Expectation, vs arbitrage 9
Exponential Brownian motion 60 84 85
Exponential Brownian motion, with drift 51
Exponential martingale 79 85
Filtration 30 48
fixed rate 165 167 168
Floating rate 166 167
Floorlet 171
Floors 170
Foreign exchange 99—106 122
Foreign exchange, interest rate models 192—196
Forward 6 11 17
Forward measure 165 191
Forward rate 134—136 142
Forward rate, bond price formula 144
Forward rate, curve 134
Forward rate, drift 143 158
Forward rate, under forward measure 192
Forward rate, volatility 143 158
Forward swaps 168
Forward, foreign exchange 99 103
Forward, interest rate 133 163
Forward, quanto 123
Forward, use in option formula 169 182
Fractal 49
Fubini 143
Gaussian process 50
Harrison and Pliska 197 200
Heath — Jarrow — Morton see “HJM”
Hedge 94 145 180 188
Hedge, Black—Scholes 96
Hedging strategy see “Replicating strategy”
history 20 30
HJM 142 158
HJM, conditions 143 148 159
HJM, equivalence to short-rate 150
HJM, multi-factor 158—163
HJM, single-factor 142—149
HJM, universality 149
Ho and Lee model 151 169 172 174
Hull and White model see “Vasicek”
IID variables 47 58
Illustrated definitions 29
Independence 4 21 46 48
Indicator function 199
Induction 19 22
Induction, backwards 19
Induction, inductive step 22 36
Induction, result 22
Instantaneous rate 132 135 136 144
Instantaneous rate, Markovian 150
Instruments 3 11 83 100 128
Interest rate 18
Interest rate, foreign exchange model 193
Interest rate, market 128—135
Interest rate, multi-factor models 172—177
Interest rate, products 163—172
Interest rate, riskless 83
Interest rate, short-rate models 149—158
Interest rate, simple model 135—142
Ito calculus 57—62
Ito's formula 59 61 81 83
Ito's formula, n-factor 185
Jamshidian 170
Joint likelihood function 70
Kolmogorov's law of large numbers see “Strong law”
Law of the unconscious statistician 7
LIBOR rate 166 168 170 175—176
LIBOR rate, under forward measure 191
Local martingales 79
Log-drift 60
Log-normal, call formula 103
Log-normal, distribution 6
Log-normal, models 181—183
Log-volatility 60
Long position 96 168 172
Marginal distribution 48
Marginal distribution, conditional 48 69
Market maker 14
Market price of risk 115—122
Market price of risk, definition 119
Market price of risk, in general models 179 188
Market price of risk, in HJM models 141 145 147
Markov process 144 150
Martingale 33 76
Martingale measure 34 44 76 197
Martingale measure, continuous model 85 87
Martingale measure, discrete model 34—39
Martingale measure, existence and uniqueness 40
Martingale representation theorem 76—79 94
Martingale representation theorem, and dividend payments 108 112
Martingale representation theorem, and tradable assets 116
Martingale representation theorem, n-factor 161 186 188
Martingale representation theorem, use in foreign exchange 102
Martingale representation theorem, use in HJM 139 146
Martingale representation theorem, use in stock models 83—85 88 180
Martingale, exponential 79
maturity 129
Mean 155 (see “Expectation mean reversion”)
Measure 30 63
Multi-factor models 172
Multi-factor models, HJM 158
Multi-factor models, normal models 174
Multiple payment contracts 164
Newtonian calculus 52
Newtonian differentials 51
Newtonian differentials, uniqueness 53
Newtonian function 52
Node 10
Noise 41 50
Non-tradable quantity 116—118 120
Normal distribution, function 43 91
Normal distribution, identification 72
Numeraires 143 188—192
Numeraires, changing 190
Numeraires, with volatility 189
Option 9 43 90 94
Ordinary differential equation 53
Ornstein — Uhlenbeck process 173
Over-the-counter 163
Partial differential equation 95
Path probabilities 21
Payoff 4 15 103 147
Pliska 197 200
Poisson process 55
Portfolio 80
POSITION 96
Previsible process 32 56 78 80
Price is right, the 14
Principal 165—167
probability 4
Probability density function 7
Process 29
Process, stochastic 55
Product rule 62 138 189
Product rule, n-factor 185
Pull to par 114
Put option 91
Put-call parity 91 171
Quantos 122—127 183
Radon — Nikodym derivative 63—68 73
Radon — Nikodym derivative, changing numeraire 105 190—192 196
Radon — Nikodym derivative, continuous time 69 71
Random variable 7 12 32 65
Random walk 46
Recombinant tree 23
Replicating strategy 8 12 40
Replicating strategy, continuous model 82 86 180
Replicating strategy, discrete model 13 22—23
Replicating strategy, foreign exchange 102
Replicating strategy, HJM model 137 146 164
Riccati differential equation 156
Risk-free construction see “Replicating strategy”
Risk-neutral measure 120 (see “Martingale measure”)
SDE 56
Self-financing 39—40 80 180
Self-financing, equation 81 89 162 189
Self-financing, in HJM model 139 147
Semimartingale 55 56
SHARE 3
Short position 80 82
Short rate see “Instantaneous rate”
Single-factor models HJM 142
Single-factor models HJM, short-rate models 149
Standard deviation 6
Sterling investor 104
Ðåêëàìà