Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Helmreich E.J.M. — Biochemistry of Cell Signalling
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Biochemistry of Cell Signalling
Àâòîð: Helmreich E.J.M.
Àííîòàöèÿ: The Biochemistry of Cell Signalling deals in depth with the principles of cell signalling, concentrating on structure and mechanism. It will serve as a reliable map through the maze of cell signalling pathways and help the reader understand how malfunctions in these pathways can lead to disease. The book is divided into four parts. Part 1 describes the machinery of signal transduction starting with the properties of signals, receptors (including receptor activation), regulators, and the molecules that link receptor and regulator. The design of signalling cascades is explained by describing central signalling pathways: the Ras-regulated MAPK and PI-3 pathways; the Rho/Rac/Cdc 42 pathway controlling chemotaxis and regulating the cytoskeleton; the G protein coupled receptor cascades in response to sensory and hormonal signals; signalling by TGF-ss in morphogenesis; cytokine signalling that controls haemopoiesis. There is also a discussion of the insulin response. As phosphorylation - dephosphorylation is involved in nearly all cellular regulatory processes, Part 1 concludes with a synopsis of its role in signalling. Part 2 describes the implementation of the signalling cascades focusing on the effect on gene transcription. After a brief description of the transcriptional machinery the regulation of transcription by cytokines and growth factors in the control of cell growth and the mechanisms and sites of control are discussed in detail. The regulators discussed include Jun/Fos, NF-AT, SREBPs, and STATs. The next two chapters cover gene regulation by nuclear receptors, including both the steroid hormone receptors and non-steroid nuclear receptors e.g. the retinoic acid receptors RAR and RXR. Part 3 studies the global cellular regulatory programs for the control of cell growth and proliferation. The first chapter concerns the regulation of the cell cycle and the role of the cyclin-dependent kinases, telomerase, Ran, and cell cycle checkpoints. The next topic is the signalling pathways in apoptosis: the TNF-receptor family death receptors, caspases, and the intracellular apoptosis signals and the role of apoptosis in the lifecycle of cells. Part 3 ends with a discussion of the signal pathways involved in the immune response, focusing on the involvement of cell-cell interactions. Part 4 considers loss of regulatory control and its consequences with respect to the molecular basis of cancer. It first describes the cellular regulatory proteins that have oncogenic potential, how they can become oncogenic and cause the transformation of normal cells to cancerous cells. Next is an analysis of the loss of developmental controls, the APC protein, ss-catenin, and the Wnt pathway, that lead to mature terminally differentiated cells reverting to immature embryonic cells. The book ends with a summary of the molecular and cellular causes of cancer and an outlook for novel therapies. Throughout the text, the emphasis is on structure and mechanism and is well illustrated with 200 figures. The Biochemistry of Cell Signalling will be an invaluable companion to all graduate students studying cell signalling.
ßçûê:
Ðóáðèêà: Áèîëîãèÿ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 357
Äîáàâëåíà â êàòàëîã: 22.12.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
-catenin, and cancer 287—292
adrenergic receptor 77-78
adrenergic receptor, desensitisation 81—82
adrenergic receptor, signalling pathway 78
5-HT (serotonin) receptor 77
Abl tyrosine kinases 38
Activins 102 103t
ADAM proteins 5—6
Adaptor proteins and linkers, ankyrin repeats 37 38
Adaptor proteins and linkers, G proteins 43—45
Adaptor proteins and linkers, notch repeats 37
Adaptor proteins and linkers, PH domain plate 4 (2p) 35—36
Adaptor proteins and linkers, phosphotyrosine phosphatases 37—38 41—43
Adaptor proteins and linkers, PTB domain 35—36 37
Adaptor proteins and linkers, Ras 46—49 50
Adaptor proteins and linkers, SH2 domain plate 2 (lp) 33—34
Adaptor proteins and linkers, SH3 domain plate 3 (2p) 34—35
Adaptor proteins and linkers, sterile -motif (SAM) 37 38
Adaptor proteins and linkers, tyrosine kinases plate 5 (3p) 37—40
Adenomatous polyposis coli (APC) gene/protein 286—292
Adenylate cyclase, adenylyl cyclase— complex plate 10 (6p)
Aldosterone, structure 195
Allosteric activation, of proteins 132—133
Ankyrin repeats 37 38
Antibodies, structure 255—256
Antigen presentation plate 28 (15p) 251—252 253 254
Antigen receptors plate 29 (16p) 255—257
Apoptosis and cancer 243—245
Apoptosis and immune system function 245 246
Apoptosis and nervous system development 245
Apoptosis and self-tolerance 263
Apoptosis, prevention plate 27 (15p) 241—243
Apoptosis, promotors 234—241
Arrestin and G-protein coupled receptor signalling 83
Arrestin and receptor desensitisation 81—82 83
B cells, activation 250—251
B cells, antigen receptors 255
B cells, signalling pathways 258—259
B cells, survival and death 261—263
Basic helix-loop-helix (bHLH), motif 162—163
Basic helix-loop-helix (bHLH), structure plate 17 (10p)
Bax and apoptosis 241
Bax and cancer 243—245
Bcl-2 and apoptosis 241—243
Bcl-2 and cancer 243—245
Bcl-2- , structure plate 27 (15p)
Bone morphogenetic proteins (BMPs) 102 103 103t 104
Brain-derived neurotrophic factor (BDNF) 14 15t
Breast cancer, and oestrogen receptor 197 199
Calcineurin, structure plate 13 (7p) 126
cAMP and G-protein coupled, receptors 78 79
cAMP and G-protein coupled,i n olfaction 95—96
cAMP response-element-binding protein (CREB) 174
Cancer, and adenomatous polyposis coli (APC) gene 286—287
Cancer, and adenomatous polyposis coli (APC) protein 287—292
Cancer, and apoptosis 243—245
Cancer, and DNA viruses 299—300
Cancer, and loss of developmental control 284—285
Cancer, and retroviral infection 270—271 299
Cancer, inherited cancer genes 294—295
Cancer, oncogenes 269—276
Cancer, proto-oncogene mutations 295—299
Cancer, tumour-suppressor genes 276—282
Caspases plate 26 (14p) 237—238 239
Caveolae, and glucose transport 141 143
CBL protein, and cancer 273
CD (cluster of differentiation) receptors, and immune response 256—257
CD95 receptor, and apoptosis 235
Cdc42 GTPase 64—65
Cdc42 GTPase, and cytoskeleton assembly 65—70
Cdc42 GTPase, and Wiskott — Aldrich syndrome protein (WASP) 73
Cdc42 GTPase, control of phospholipases 70—72
Cell adhesion, and cancer 287—289
Cell adhesion, role of integrins 68t 69—70
Cell cycle, checkpoint control 228—230 295—299
Cell cycle, chromosome duplication 225 226
Cell cycle, cyclin-dependent kinases see “Cyclin-dependent kinases (Cdks)”
Cell cycle, cyclins 214 215
Cell cycle, cytokinesis 226—228
Cell cycle, DNA replication 224—225
Cell cycle, evolution of 230
Cell cycle, phases 213
Cell death, programmed see “Apoptosis”
Cell lineage differentiation, cytokine functions 117—119
cGMP, in visual response 90—92
Chaperones, and steroid hormone receptors 197 198
Chaperonins, and steroid hormone receptors 197 198
Chemotaxis 70—72
Chemotaxis, G protein control of 89—90
Chromosome duplication 225 226
Colony-stimulating factors (CSFs) 117 118t
Colony-stimulating factors (CSFs), processing 7
Cortisol, structure 195
Covalent activation, of proteins 132—133
CREB (cAMP response-element-binding protein) 174
Crk adaptor protein 31—32
Csk kinase 40
Cyclin-dependent kinases (Cdks) 214
Cyclin-dependent kinases (Cdks), and cell-cycle transitions 216—224
Cyclin-dependent kinases (Cdks), and DNA replication 224—225
Cyclin-dependent kinases (Cdks), and evolution of the cell cycle 230
Cyclin-dependent kinases (Cdks), cyclin-dependent-kinase inhibitor (CKI) plate 25 (14p)
Cyclins 214 215 see
Cytochrome c, and apoptosis 238 240
Cytokines, and cell lineage differentiation 117—119
Cytokines, and embryonic development 116—117
Cytokines, and T cell differentiation 252—254 255t
Cytokines, antiviral effects 118 119
Cytokines, JAK/STAT signalling pathway 111—116
Cytokines, receptors 110—111 114
Cytokinesis 226—228
Cytoskeleton assembly, role of GTPases 65—70
Cytosolic kinases 123
DAF-2, receptor 17—18
DAF-2, signalling pathway 148—149
Death receptors 235—236 237
Development, and steroid hormone receptors 193—195
Development, embryonic, cytokine functions 116—117
Development, embryonic, STATs 116—117
Development, loss of control of, and cancer 284—285
Development, of nervous system, and apoptosis 245
Diabetes 137—138
DNA tumour viruses 299—300
DNA, damage 240—241
DNA, histone modification 166—167
DNA, methylation 167—168 297
DNA, nucleosomes plate 22 (12p) 165—166
DNA, replication 224—225
DNA, synthesis 62—63
DNA-binding proteins, structural motifs plate 15 (9p) plate plate plate plate plate plate 161-4
Ecdysone receptor 192—193
Ecdysteroids 192
EGF see “Epidermal growth factor (EGF)”
Embryonic development, cytokine functions 116—117
Eph-like receptors 9t 18 37 38
Ephrins 9t
Epidermal growth factor (EGF), EGF receptor and cancer 272
Epidermal growth factor (EGF), signal transduction mechanisms 9t 10—11
Erythropoietin (EPO) receptor, ligand-dependent dimerization 25—27
Estrogen receptor see “Oestrogen receptor”
Fibroblast growth factors (FGFs), signal transduction mechanisms 9t 12—14
Focal adhesion kinase (FAK), integrin-FAK signalling system 68—70
Fos/Jun transcription factors 172—174
G proteins, subunit plate 8 (5p)
G proteins, -holocomplex structure plate 7 (4p)
G proteins, -subunit functions 79—80
G proteins, and cancer 273
G proteins, G- subunit structure plate 6 (4p)
G proteins, GDP/GTP cycle 43—45
G proteins, heterotrimeric G proteins 88—90
G proteins, in visual response plate 12 (7p)
G proteins, monomeric G proteins 89—90
G proteins, Ras/GAP complex structure plate 9 (5p)
G proteins, Ras/MAP kinase pathway 57—64
G proteins, Rho/Rac/Cdc42 GTPases 65—73
G-protein-coupled receptors, and olfaction 92—96
G-protein-coupled receptors, and Ras/MAP kinase pathway 83—85
G-protein-coupled receptors, and taste transduction 96—97
G-protein-coupled receptors, and visual response 90—92
G-protein-coupled receptors, control of hormonal signalling 79—81
G-protein-coupled receptors, receptor desensitisation 81—2 83
G-protein-coupled receptors, rhodopsin activation 85—88
G-protein-coupled receptors, second messenger signalling plate 10 (6p) plate 78 79
G-protein-coupled receptors, structure 76—78
GATA transcription factors 175
GDNF (glial-cell-line-derived neurotrophic factor) 14—17
GDP/GTP cycle, subunit plate 8 (5p)
GDP/GTP cycle, -holocomplex structure plate 7 (4p)
GDP/GTP cycle, and cell signalling 43—45
GDP/GTP cycle, G- subunit structure plate 6 (4p)
GDP/GTP cycle, Ras/GAP complex plate 9 (5p)
Gene transcription see “Transcription”
Genomic imprinting 167—168
Glial-cell-line-derived neurotrophic factor (GDNF) 14—17
Glucose, homeostasis, insulin actions 140—142
Glucose, protein glycation 138 139
Glutamic-acid-rich proteins (GARPs), in visual response 91
Glycation, of proteins 138 139
Glycogen phosphorylase, regulation by phosphorylation dephosphorylation 130—132
Glycogen phosphorylase, structure plate 14 (8p)
Grb2 (growth-factor-receptor-binding protein), SH2 and SH3 domains 32 34—35
Growth factor receptors and cancer 272
Growth factors, and cancer 271—272
Growth factors, processing 5—8
Growth hormone (GH) receptor, binding domain structure plate l (lp)
Growth hormone (GH) receptor, ligand-dependent dimerization 24—25
GTPase-activating proteins (GAPs), and control of Ras activity 46—48
GTPases 43—45
GTPases, and cytoskeleton assembly 65—70
GTPases, control of phospholipases 69 70—72
GTPases, Ras superfamily 64—65
GTPases, signalling pathways 72—73
Guanine nucleotide release proteins (GNRPs), and control of Ras activity 48—49 50
Gusducin, and taste transduction 96—97
Haematopoietic cells, differentiation, cytokine functions 117—119
Heat-shock protein (Hsp) system, and steroid hormone receptors 197 198
Hepatocyte growth factor (HGF) 9t 18
HGF-like factor 9t
Histones 165-6
Histones, modification 166—167
Histones, nucleosome core particle structure plate 22 (12p)
Homeodomain proteins 162 163
Homeodomain proteins, MAT /MCM1/DNA complex structure plate 15 (9p)
Homeotic genes 162 193—5
Immune response 250—251 259—260
Immune response, antigen presentation plate 28 (15p) 251—252
Immune response, antigen receptors plate 29 (16p) 255—257
Immune response, lymphocyte survival and death 261—263
Immune response, lymphoid organs 250 251
Immune response, signalling pathways in T cells and B cells 258—259
Immune response, T cell differentiation 252—254 255t
Immune response, T cell selection 252
Immune surveillance, and apoptosis 246
Immunoglobulins, structure 255—256
Imprinting, of genes 167—168
Insulin receptor, homologues 17—18
Insulin receptor, insulin receptor substrates (IRS) 143—146
Insulin receptor, signal transduction mechanisms 9t 17
Insulin receptor, structure 11
Insulin, and glucose homeostasis 140—142
Insulin, as growth factor 137 142—150
Insulin, functions 137—40
Insulin, history 137
Insulin, processing 8
Insulin, signal transduction mechanisms 9t
Insulin, signalling pathways 142—150
Insulin-like factor, signal transduction mechanisms 9t
Integrin-FAK signalling system 68—70
Integrins 65—70
Interferons 118 119
Interleukin-1 -converting enzyme (ICE) plate 26 (14p) 237
Interleukins, and T cell differentiation 252—254 255t
JAK/STAT signalling pathway, and cytokines 111—116
JNKs (Jun N-terminal kinases) 60
Jun/Fos transcription factors 172—174
Juvenile hormone (JH) 195
Keratinocyte growth factors (KGFs) 9t 12
KIT receptor 9t 14
KL ligand 9t 14
Leptin, cross-talk with insulin signalling pathways 148—150
Leucine zipper motif 162 163
Ligands, growth factor processing 5—8
Linker proteins see “Adaptor proteins”
Lymphocytes see “B cells” “T
Macrophage colony-stimulating factor-1 (MCSF-1) 9t
Macrophage colony-stimulating factor-1 (MCSF-1), signal transduction mechanisms 11
MAD proteins 176
Major histocompatibility complex (MHC), and antigen presentation 251—252 253 254
Major histocompatibility complex (MHC), and antigen receptor, structure plate 29 (16p)
MAP kinase pathway see “Ras/MAP kinase pathway”
MAP kinases 60—62
MAP kinases, role in growth and proliferation 62—63
MAPKKs (MEKs) 60
Mast cell growth factor 9t 14
MAT 2/MCM1/DNA complex, structure plate 15 (9p)
MCSF-1 (macrophage colony-stimulating factor-1) 9t
Metalloproteinases, and growth factor processing 5—6
Methylation, of genes 167—168
Methylation, of genes, and cancer 297
MHC see “Major histocompatibility complex (MHC)”
Mitochondria, and apoptosis 238 240
Mitogen-activated protein kinases see “MAP kinases”
Morphogenesis, TGF- signalling pathway 108—109
Multi-enzyme organelles, phosphorylation cascades 129—130
Nerve growth factor (NGF), and apoptosis 245
Nerve growth factor (NGF), p75NGFR 15—16 245
Nerve growth factor (NGF), signal transduction mechanisms 14—17
Nervous system development, and apoptosis 245
Neuregulin 9t
Neurofibromin 1
Neurofibromin, and control of Ras activity 47—48
Neurotrophins 14—17
Neurotrophins and apoptosis 245
NF- B transcription factor 164 175
NF- B transcription factor, NF- B/p52/DNA complex plate 23 (13p)
NF- B transcription factor, structure plate 18 (10p)
NF-AT transcription factor 174—175
NF-AT transcription factor, NF-AT/Jun/Fos/DNA complex plate 23 (13p)
NF-xB transcription factor 175
NGF see “Nerve growth factor(NGF)”
Notch repeats 37
Nuclear receptors, for non-steroids see “Retinoic acid receptors (RARs)” “Retinoid “Thyroid
Nuclear receptors, for steroid hormones see “Steroid hormone receptors”
Nuclear transport, and transcriptional control 181—182 183
Nucleosomes 165—166
Nucleosomes, core particle structure plate 22 (12p)
Oestradiol, structure 199
Oestrogen receptor, and breast cancer 197 199
Olfaction, neuronal connections 92—93
Olfaction, odorant receptors 93—95
Olfaction, odorants 93
Olfaction, signal transduction in olfactory neurons 95—96
Oncogenes, and proto-oncogene functions 269—271
Oncogenes, and signalling pathways 271—273
Oncogenes, transformation from protooncogenes 273—276
Oxidative stress, stress activated transcription factors 179—180
p53, and cancer 243—245 279 280—282
p53, structure plate 30 (16p)
p75NGFR, and apoptosis 245
p75NGFR, signal transduction mechanisms 15—16
Ðåêëàìà