Электронная библиотека Попечительского советамеханико-математического факультета Московского государственного университета
 Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум
 Авторизация Поиск по указателям
Butz Arthur R. — A theory of 1/f noise
 Обсудите книгу на научном форуме Нашли опечатку?Выделите ее мышкой и нажмите Ctrl+Enter Название: A theory of 1/f noise Автор: Butz Arthur R. Аннотация: Letu(1/Q) be an absolutely integrable function and define the random process where thet i are Poisson arrivals and thes i, are identically distributed nonnegative random variables. Under routine independence assumptions, one may then calculate a formula for the spectrum ofn(t), S n(), in terms of the probability density ofs, ps(). If any probability density ps() having the property ps() I for small is substituted into this formula, the calculated Sn() is such that Sn() 1 for small . However, this is not a spectrum of a well-defined random process; here, it is termed alimit spectrum. If a probability density having the property ps() for small , where > 0, is substituted into the formula instead, a spectrum is calculated which is indeed the spectrum of a well-defined random process. Also, if the latter ps is suitably close to the former ps, then the spectrum in the second case approximates, to an arbitrary, degree of accuracy, the limit spectrum. It is shown how one may thereby have 1/f noise with low-frequency turnover, and also strict 1/f 1– noise (the latter spectrum being integrable for > 0). Suitable examples are given. Actually, u() may be itself a random process, and the theory is developed on this basis. Язык: Рубрика: Физика/ Тип: Статья Статус предметного указателя: Неизвестно ed2k: ed2k stats Год издания: 1972 Количество страниц: 17 Добавлена в каталог: 15.04.2012 Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Реклама
 © Электронная библиотека попечительского совета мехмата МГУ, 2004-2023 | | О проекте